
1
Copyright © 2013 Tata Consultancy Services Limited

Reducing Static Analysis Alarms

based on Non-impacting Control Dependencies

Tukaram Muske
TRDDC,

Tata Consultancy Services,

Pune, India

t.muske@tcs.com

Rohith Talluri
TRDDC,

Tata Consultancy Services,

Pune, India

rohith.talluri@tcs.com

Alexander Serebrenik
Eindhoven University of Technology,

Eindhoven, The Netherlands

a.serebrenik@tue.nl

17th Asian Symposium on Programming Languages and Systems (APLAS)

Nusa Dua, Bali, 2 - 4 December 2019

2

Background

Program

Safe program points ErrorsAlarms

Static analysis

Postprocessing of alarms

Manual inspection of alarms

Enriching alarms with additional information

Postprocessed alarms

Reducing the number of alarms

Clustering of alarms

3

Clustering of alarms (Background)

1. void foo(){

2. int arr[5], tmp, i = 0;

3. …

4. arr[i] = 0; // Dominant alarm

5. if(i < tmp){

6. arr[i] = 1;// Follower alarm

7. }

• Example 1

1. void foo(){

2. int arr[5], tmp, i = 0;

3. …

4.

5. if(i < tmp){

6. arr[i] = 0;// Dominant alarm

7. else

8. arr[i] = 1;// Dominant alarm

9. }

A6

A8

• Example 2 (Limitation)

A4

A6

𝐴4 is FP ⇒ 𝐴6 is FP

𝐴6 is FP ⇏ 𝐴8 is FP

𝐴8 is FP ⇏ 𝐴6 is FP

4

Repositioning of alarms[1] (Background)

1. void foo(){

2. int arr[5], tmp, i = 0;

3. …

4. arr[i] = 0; // Dominant alarm

5. if(i < tmp){

6. arr[i] = 1;// Follower alarm

7. }

• Example 1

• Example 2 (Overcoming limitation of clustering techniques)

A4

A6

𝐴4 is FP ⇒ 𝐴6 is FP

1. void foo(){

2. int arr[5], tmp, i = 0;

3. …

4. //assert(0 ≤ i ≤ 4);

5. if(i < tmp){

6. arr[i] = 0;

7. else

8. arr[i] = 1;

9. }

Alarm RA4

A6

A8

[1] Tukaram Muske, Rohith Talluri, and Alexander Serebrenik. “Repositioning of static analysis alarms”. In ACM
SIGSOFT international symposium on software testing and analysis (ISSTA), pages 187 -197, 2018. ACM

𝑅𝐴4 is FP ⟺
𝐴6 and 𝐴8 are FPs

5

Repositioning of alarms (Background)

1. void foo(){

2. int arr[5], i;

3. …

4.

5. if(c1)

6. arr[i] = 0;

7.

8. if(c2)

9. arr[i] = 1;

10. }

A6

A9

RA

▪ Limitation of the repositioning technique

– Conservative assumption about the controlling conditions of alarms

• Limitation Case

There doesn’t exist 𝑅𝐴 such that

𝑅𝐴 is FP ⟺ 𝐴6 and 𝐴9 are FPs

(Because, 𝐴6 can be safe due to c1, and 𝐴9 can be safe due to c2)

6

Pilot Study

▪ What percentage of similar alarms appear in the limitation cases?

▪ Study using

– 64779 alarms on 16 open source applications

– For 5 verification properties – AIOB, DZ, OFUF, IDP, and UIV

– Resulting after their repositioning

▪ Results

– 50% of alarms are similar

– Alarms in the limitation cases

o 74% of the similar alarms

o 38% of the total alarms

Considerable number of similar alarms are not grouped together

due to the conservative assumption!

7

Our Solution - Overview

▪ Introduce notion of

– non-impacting control dependencies (NCDs) of alarms

– Impacting control dependencies (ICDs) of alarms

• Compute approximated NCDs/ICDs

• Use them to improve alarms repositioning

• Motivating Example

If
𝑛5 → 𝑛6 (i.e. c1) is NCD of 𝐴6

and
𝑛8 → 𝑛9 (i.e. c2) is NCD of 𝐴9

Then,

𝑅𝐴4 is FP ⟺ 𝐴6 and 𝐴9are FPs

1. void foo(){

2. int arr[5], i = 0;

3. …

4. //assert(0 ≤ i ≤ 4);

5. if(c1)

6. arr[i] = 0;

7.

8. if(c2)

9. arr[i] = 1;

10. }

A6

A9

Alarm RA4

8

The Notion of ICDs/NCDs

1. void foo(){

2. …

3. if(c){

4. if(…)

5. arr[i] = 1; // Alarm 𝛼
6. }

7. }

1. void foo(){

2. …

3. if(nondet()){

4. if(…)

5. arr[i] = 1; // Alarm 𝛼
6. }

7. }

Program P Program P’

A transitive control dependency 𝑛𝑥 → 𝑛𝑦 (e.g. 𝑛3 → 𝑛4) of 𝛼 is an ICD only if

1. 𝛼 is a false positive in P; and

2. P’ s.t. condition of 𝑛𝑥 is replaced by nondeterministic choice function,

and 𝛼 is an error in P’

Otherwise, 𝑛𝑥 → 𝑛𝑦 is an NCD of 𝛼.

9

Illustrating NCDs

1. void foo(){

2. i = safeValues();

3.

4. if(c){

5. if(…)

6. arr[i];// 𝛼
7. }

8. }

1. void foo(){

2. i = unafeValues();

3.

4. if(c){

5. if(…)

6. arr[i];// 𝛼
7. }

8. }

1. void foo(){

2. i = unafeValues();

3.

4. if(c){

5. if(…)

6. arr[i]; // 𝛼
7. }

8. }

Case 1 Case 2.1 Case 2.2

𝑛5 → 𝑛6 is NCD of 𝛼. The unsafe values reach 𝛼.
Then,

𝑛5 → 𝑛6 is NCD of 𝛼

The unsafe values do not

reach 𝛼 due to “C”. Then,

𝑛5 → 𝑛6 is ICD of 𝛼

But, how to compute NCDs/ICDs of alarms?

10

Approximated NCDs

1. void foo(){

2. int arr[5], tmp = 1, i = 0;

3. …

4. //assert(0 ≤ i ≤ 4);

5. if(c1)

6. arr[i] = 0;

7.

8. if(c2)

9. arr[i] = 1;

10. }

A6

A9

Alarm RA4

▪ Observation

– A control dependency rarely makes an alarm safe (safety condition)

– Value Slice [2]

o Transitive control dependencies of alarms rarely make the alarms safe (2% of alarms)

▪ Intuitively, the chance of existing different safety condition for each of the similar

alarms is even lower.

𝑛5 → 𝑛6 (i.e. c1) is NCD of 𝐴6

and

𝑛8 → 𝑛9 (i.e. c2) is NCD of 𝐴9

[2] Amitabha Sanyal, and Uday P. Khedker. “Value slice: A new slicing concept for scalable property checking”. In
International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pp. 101-115.
Springer, Berlin, Heidelberg, 2015.

11

NCD-based Repositioning

▪ Constraint 1 (Safety)

Program points of the repositioned alarms R together

dominate the program point of every alarm in Ꮎs

▪ Constraint 2 (overcoming spurious error

detection)

▪ For every repositioned alarm r in R, there exists a path

between r and 𝜙 𝜖 Ꮎs such that the path does not have

an ICD of 𝜙.

▪ Constraint 3

The number of the repositioned alarms R is strictly not
greater than the number of original alarms Ꮎs

Let Ꮎs be a set of similar alarms, and R be the set of alarms after their repositioning

R

Ꮎs

𝛼1 𝛼2 𝛼3

r1 r2

12

Repositioning Technique

▪ Data flow analysis-based technique

– Computing approximated NCDs

– Repositioning with the three constraints

– Postprocessing of repositioned alarms

– More details in the paper

13

Evaluation

▪ Implementation

– Analysis framework of TCS ECA

– Limited inter-functional repositioning

▪ 105,546 alarms generated on

– 32 applications

o 16 open source

o 16 Industry (11 C and 5 COBOL)

– 5 verification properties

o AIOB, DZ, OFUF, IDP and UIV

– Resulting after state-of-the-art grouping and repositioning

14

Evaluation Results

Application

category

Max.

reduction

Average

reduction

Median

reduction

Open Source 23.57% 10.16% 9.02%

C Industry 29.77% 8.97% 17.18%

COBOL Industry 36.09% 27.68% 28.61%

▪ Evaluation of spurious error detection

– Manual analysis of 150 repositioned alarms

– Corresponding to 482 original alarms

– Reduction 70% with spurious error detection rate 2%

15

Summary

Problem
• Around 38% of the alarms still are not grouped by State-of-the-

art alarms clustering and repositioning techniques

Our

solution

• Introduced the notion of NCDs of alarms

• Computation of approximated NCDs

• NCD-based repositioning

Technique
• Data-flow analysis based technique

• Performing NCDs computation and repositioning together

Evaluation

Application category Max. reduction Average reduction Median reduction

Open Source 23.57% 10.16% 9.02%

C Industry 29.77% 8.97% 17.18%

COBOL Industry 36.09% 27.68% 28.61%

• Safe reduction, however spurious error detection rate of 2%

