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Abstract—Bug detection using static analysis has been found
useful in practice for ensuring software quality and reliability.
However, it often requires sifting through a large number of
warnings. This can be handled by generating an assertion
corresponding to each warning and verifying the assertion using
a model checker to classify the warning as an error or a
false positive. Since model checking over larger code fragments
is non-scalable and expensive, it is useful to model check a
given assertion with a small calling context length. For this, the
variables receiving values from outside the context are initialized
with arbitrary values generated by non-deterministic choice
functions. The calling context length is then gradually increased
on a need basis to include callers higher up in the call chains.
While this aids scalability by keeping the calling context as small
as possible, it requires multiple calls to model checker for the
same assertion, requiring a considerable amount of time.

We present a static analysis to expedite false positive elimina-
tion. It is based on the following observation: When the variables
involved in an assertion are allowed to take arbitrary values at
the point of assertion, the assertion is most likely to be violated
by some or the other combination of values. In such cases, usage
of a model checker is redundant as it does not aid in resolution
of the corresponding warning. Our data flow analysis identifies
(an over-approximated set of) such variables using a novel lattice
so that model checking of assertions involving such variables can
be avoided. Our empirical evaluation demonstrates that, on an
average, the proposed static analysis avoids 49.49% of the total
model checking calls, and it reduces the false positives elimination
time by 39.28%. However, this gain is achieved at the cost of
missing 2.78% false positives which could have been eliminated
otherwise.
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practical needs of constructing trusted software. The obst
manual review can be reduced by increasing the precision of
verification on the one hand and scaling it to larger programs
on the other hand. Given the complementary nature of static
analysis and model checking, some approaches|[B],[[8], [17]
[19] try to combine the two to get the best of both the worlds:
the scalability of static analysis and the precision of nhode
checking. Among various combinations attempted so far, a
cascaded approach| [6], |14] uses static analysis first agm th
the generated warnings are processed by a model checker t
eliminate the false positives. This processing involves:

e Generating an assertion corresponding to each warning,
where the assertion relates to the property (correctness
or safety) being checked at the warning point. That is,
a warning is a false positive (the warning pointsiafe
when its corresponding assertion holds.

e \erifying the generated assertion using a model checker
to reduce the list of warnings needing manual review.

This approach of combining static analysis with modeling
checking has been found to be very effective in eliminating
a significant number of false positives without being atect
by the non-scalability of the model checking [6], [14], [1H#]
uses the following insight for scaling model checking: ®inc
model checking over larger code fragments is impractical, i
is useful to model check a given assertion with a small agllin
context in which the variables receiving values from ouwdsid
the context are initialized with arbitrary values genedlaly
non-deterministic choice functions|[6] (these functione a
described in detail in Section 1IHA). The calling contet i
then incrementally expanded on a need basis to includergalle
higher up in the call chains (as described in Algorithim 1 in

Static analysis [[10],[[13] and model checking [2].] [S] appendix). While this aids scalability by keeping the cajlin
have widely been used in achieving software quality andontext as small as possible, it requires multiple calls ¢alen

reliability by facilitating early detection of defects. &be two

checker for the same assertion which ironically increakes t

techniques are complementary on the metric of scalabilityjme required [[12]. The following factors contribute to the
precision, and efficiency [7],L[16],[[18]. Static analysis i inefficiency of the overall approach:
able to verify very large and complex systems whereas model

checking often faces scalability issue as the system side an i) Static analysis issues a large number of warnings due to
complexity increases. Further, static analysis genenai@sy its imprecision.

false warnings, commonly referred to as false positives [7] ii) Model checking is expensive due to the state space
whereas model checking is precise in property verification  explosion.

when it scales. Also, the software verification using staticiii) Avoiding the state space explosion (and in turn non-

analysis is generally far more efficient as compared to the scalability) in model checking by incremental expansion

verification using model checking. of calling contexts generally leads to multiple calls to

. e _ . model checker for the same assertion.
Given that verification problems are undecidable in gen-

eral, manual review of warnings is inevitable to fulfill the In this paper, we address the third source of inefficiency



21, int f20){

22. if(var == factor)
1. const int arr[] = {0, 2, 5, 9, 14}; 23. f3(var);
2. int ch, var, factor; 24. c
3. 25. }
4. void f1(){
5. unsigned int i, j; 31. int f3(int p){
6. 32. int a, b, denom= 1;
7. i = 1ibl(); 33. if(ch < 5)
8. j = 1ib2(); 34. denom = p;
9. var = 1ib3(); 35. el se
10. 36. denom = 10;
11. if(i <j & j < 5){ 37.
12. factor = arr[j] - arr[i]; 38. assert (denom =0);
13. f2(); 39. a = 100 / denom//warni ng
14. 40.
15. } 41. if(b < 10)
42. ch = p;
43.}

libl, lib2, andlib3 are library functions whose code is not available for static analysis. @tuenrtype oflibl, andlib2 is unsigned intand
for lib3, it is signed int The assertion at line 38 has been inserted to resolvéithdge by zerowvarning reported at line 39.

Fig. 1: Motivating example for false positive elimination.

by trying to minimize the number of model checker calls forticular, our empirical evaluation using two embedded syste
an assertion by eliminating the redundant calls. Increaient applications (of sizes 40 KLOC and 50KLOC) indicated that,
expansion of calling contexts is required when the modebn an average, the proposed static analysis identifies mode
checking in smaller context finds a counterexample. We obehecking calls violating the assertion with a precision of
serve that, in most cases the counterexample is generated r8¥.3%. This identification reduces the total model checking
because of the values assigned to variables by the statemewglls by 49.49% and the false positives elimination time by

in the program but by the non-deterministic choice function 39.28%. However, it is achieved at the cost of missing 2.78%

introduced outside of the context. That is, when the vagisbl of false positives which could have been eliminated othsswi

involved in an assertion are allowed to take any arbitraiyeva This elimination loss is due to the imprecision in computati

at the point of assertion, the assertion is most likely to beof cnv variables. The empirical evaluation also demonstrated

violated by some or the other combination of values. In suchrade-off between efficiency and precision in false posgiv

cases, using a model checker does not aid in resolution of thaimination when theenv variables are computed at different
corresponding warning and hence is redundant. We are motevels of over-approximation.

likely to resolve a warning by model checking the assertion

in an expanded context in which variables are not allowed to

take all pOSSib|e values at the point of assertion. e It introduces the notion ofnv variables.

e It presents a light weight data flow analysis to compute
the cnv variables, and uses these variables to identify
redundant modeling checking calls during elimination of
false positives.

e |t exploits the trade-off between the precision and eff-
ciency of false positives elimination and demonstrates the
possibility of improving efficiency considerably with a
negligible loss in precision.

This paper makes the following research contributions.

We propose concept of Complete-range Non-deterministic
Values €nv) variables to denote the variables taking any
arbitrary value (all possible non-deterministic valueahd
use these to identify redundant model checking calls. In
general, computingnv variables is undecidable because of
the static approximation of execution paths by control flow
paths. Therefore, we can only compute an approximation of
cnv variables. There are two kinds of approximations in play:

(a) over-approximation of execution paths by control flow  Qutline: Section[Tl provides a motivating example. In
paths, and (b) over-approximation or under-approximatbn sectionTl, we present a static analysis to identify redantd
the set ofcnv variables at a program point asmaay or a  model checking calls by computing tisev variables. Details
must property. The first kind of approximation is inevitable. gpout the implementation, experimental set up and restdts a

We have defined a data flow analysis with a novel latticeprovided in Sectiof V. Section]V presents related work, and
structures for the second kind of approximations. Due tséhe finally we conclude in Section VI with future work.

approximations,

L . [I. A MOTIVATING EXAMPLE
e we may end up eliminating more model checking calls

than we ideally should. Consider the example in Figuré 1 whose verification using
e we may end up missing some redundant model checkingtatic analysis reports divide by zerowarning at line 39.
calls that we ideally should not. This warning is a false positive: The only way the variable

denomcan be zero is if the variablg is zero (line 34). This
We have studied these effects empirically and found themmequires the actual argumewar of the call tof3 to be zero
to be relatively insignificant compared to the benefits. In pa (line 23) which depends on the values of the varidbaletor



(line 22). Given the initialization of arragr (line 1), for any  A. Basic Terms and Concepts
combination of index variables satisfyirigs j, the RHS of

the assignment at line 12 can never be zero, ruling out any
possibility of factor, and hencelenom being zero. X

1) Assertion Variables:A given assertiomy, is a boolean
pression describing a constraint on the values of thabias
occurring in the expression. This constraint must be satisfi

In order to handle this warning, an assertion has been addexvery time statement is executed. The variables occurring
(line 38). LetA, denote an assertion at lime andV (A, f) in an assertion are calledssertion variablesFor example,
denote its verification in the calling context beginning twit denomis the only assertion variable usedAgs.
proceduref. Then model checking oAsg using the approach

of context expansion proceeds as follows: 2) Input Variables: The computations in a procedure could

depend on global variables and formal parameters which take

i) The first call to model checker ¥ (Ags, f3) with non- values from the calling contexts. Such variables are terazed
deterministic values assigned to the variables receivingnput variablesof the procedure. A variable is identified as
values from outside the context dB. These values are an input variable of proceduré if there exists a path irf,
assigned at the start df3 (shown in Figurd12 and also ©n whichv is read before it is written to. Since we consider
described in SectioR IIFA). The model checker trivially interprocedural paths starting ify they include the paths in
finds a counterexample by choosing the valugais 0.  callees off transitively.

i) The next call V(Agg, f2) expands the calling context

. S0, . . Note that the input variables
with non-deterministic values assigned to the variables P

receiving values from outside the context £2 (shown e are procedure specific (e factor is an input variable for
in Figure[2). The model checker once again reports a {2 put not for f1),
__ counterexample by choosingr andfactor to be 0. e may be indirectly accessed in a (transitive) callee (ehg.
iiif) The third callV (Agg, f1) assigns non-deterministic values is an input variable for bott1 and f2 though it is read

to the variables receiving values from outside the context  only in f3), and

of f1 (shown in Figurél2). Now regardless of the values o must be mutable variables (eayr is not an input variable

of i and j, the model checker fails to find value O for for f1 because it is @onstantarray.)

factor (and in turn tovar and p), and hence it declares

that the assertioAzg always holds. Thus, the verification 3) Non-deterministic Choice Function®As mentioned in

call V(Agg, f1) eliminates the warning at line 39. Sectior{]], verification of assertiof, in the context of proce-

) o ~ duref is denoted by (An, f) whereA, appears in a statement

~ Itis easy to see that the model checker is invoked multiplesither in f or one of its transitive callees. For scalability of
times for the same assertion. Further, the first and secongkrification, f is chosen as close to the assertion in the call
calls do not contribute in eliminating the false positivéieSe  hierarchy as possible and the callerstaire ignored. However,
calls generate counterexamples because the values abbigne this comes at the cost of precision—since the code assigning
non-deterministic choice functions reach line 38 (the @®8®  yalues to input variables df is ignored,A, should be verified

point) unconstrained. That is, variabfenomis acnv vari-  for arbitrary values of the input variables. If the assertie
able at line 38 for the model checker caWl{Ags, f3) and  verified successfully, it holds for any arbitrary value amhte
V(Ags, f2). Hence these calls are provably redundant. by implication, for the original values in the program.

Note that the property that a variable may take any arbitrary  For this purpose, arbitrary values are assigned to the input
value from its complete range of values is orthogonal toyariables by using non-deterministic choice functiongjufé
whether it is initialized or not. For example, in Figlre 1: [ Jists the non-deterministic choice functions assigniatyes
to the input variables of the procedures in Figure 1. Theeang

e Variablei has been initialized on line 7 but it is@V ¢ ype non_deterministic values generated by these funstis
variable at line 10 because the library functidml may determined by their return-types (not shown)

return any value. On the other hand the same variable is
not acnv variable at line 12 because it cannot take any  During a verification calV (An, f), a model checker gener-
value greater than 3. ates all possible combinations of values of the input véemb
e Variable b is uninitialized in procedure3. It is acnv of f, and evaluates the assertiBp for every combination. If
variable on lines 33 to 39 but not on line 42 because ithe assertion is not violated by any of the combinations, the
cannot take any value greater than 9 when the executiomodel checker reports successful verification of the assert
reaches line 42. Otherwise, the model checker provides a counterexamplein t
form of program trace that violates the assertion. Hendefor

Thus the information computed bynv variables analysis is jn the paper, the termsounterexampl@nd assertion violation
incomparable with the information computed by a possiblyare used interchangeably.

uninitialized variables analysis and the two analyses d#re d o )
ferent. 4) Complete-range Non-deterministic Valueny) Vari-

ables: The values assigned to input variables of a procedure
by the non-deterministic choice functions, at the starthef t
procedure, further may get assigned to other variablesen th

This section describes our approach of identifying redunprocedure as a consequence of data-dependence. These valu
dant verification calls through computationafv variables in  also may get constrained through control or data-depemdenc
the program. We begin by explaining some terms and conceptset Rn, be the range of the non-deterministic values that a
by referring to the code sample in Figure 1. variablev may take at some program poipt and letRa be

IIl. A STATIC ANALYSIS FORRVCS IDENTIFICATION



/1 procedure f2

nondet _int();
nondet _char ();
nondet _int();

/1 procedure f1
ch = nondet _char();

var =
ch =
factor =

/| procedure f3
p = nondet_int();
ch = nondet _char();

Fig. 2: Examples of functions assigning non-determinigtifues

the range of values thatis allowed to take at any program
point (that is,Rais the range of data-type a@). A variablev
is called acnv variable at a program poirg only if Ra= Rny,.
Thus, we categorize the variables taking the complete rahge

var or factor.
We useclIn(n, f) (resp.cOut(n, f)) to denote thecnv
variables at the entry (resp. exit) point of statemeiaind
with proceduref as the calling context.

the non-deterministic values arv variables, and the other set (c) May/must reachability.The cnv status of a variables

of variables (taking partial set of such values or fixed value
assigned by the program statements) as eronvariables.

The factors that influence computationarfv variables are
described below.

(a) Context sensitivity. The assignments involving non-
deterministic choice functions are introduced at the start
of the procedure that begins the calling context under
consideration. Thus, a variable may becav variable
for a specific calling context but not for some other
calling context. For examplefactor is a cnv variable

at a program point depends on the paths along which
is cnv. Whenv is cnv along every path reaching the
program point,v is said to be amustcnv at that point.

If it is cnv along some but not necessarily all paths
reaching the program point, it is maycnv. For exam-
ple, whenciIn(38,f3) are computed asnustcnv vari-
ables, ch,p € cIn(38, f3) and denom¢ cIn(38, f3). Fur-
ther, whenciIn(38, f3) corresponds tanaycnv variables,
denome cIn(38, f3).

5) Complete-Range Non-deterministic Value Expressions:

in the context off2 at all program points belonging to e extend the concept of non-deterministic value variatiles
proceduref3, since it directly receives the complete range€XPressions. An expressi@occurring in statemem is said
of the correspondingly assigned non-deterministic valuesl® P& acnv expression in the calling context of proceduré
However, when we extend the context to beginfa; 'S evaluation using thenv variables at the same point (entry
factor ceases to be env variable at the same points (in ©f N) and in the same contexf), results in complete range
proceduref3), because the values assigned at line 12 ar@f values ofe. For example, assuming variablesy, andz to

computed using constant array elements.
Flow sensitivity.The range of the values of a variable is
program point-specific and it may be different at different
program points. For examplelenomis a cnv variable
at the exit point of the statement at line 34, because it is
assigned with the value of@v variablep. However, it is
not acnv variable at the exit point of the statement at line
36, since it is assigned with 10. Flow sensitivity influences
the cnv status by the following two dependencies:
(i) Data dependenceA cnv (resp. norenv) variable
at a program point may influence the values of a
non<nv (resp.cnv) variable and convert its status.

(b)

be integers,

e expressiongx+ 10), (x++), and (x+Y) in statemenn
arecnv expressions whealn(n, f) = {x,y,z}.

e expressiongx+ 10), and (x++) in statement are not
cnv expressions whenln(n, f) = {y, z}.

e expressiongx/100), (x%2), and (100) in statememtare
not cnv expressions wheanin(n, f) = {x}.

e the arithmetic expressiorafr[j] — arr|i]) in statement at
line 12 in Figure[ll is not &nv expression with respect
to anycnv variables.

For instance, withf3 as the calling context, the B. Computation otnv Variables

assignment statement at line 34 changes status of

denomfrom non<nv to cnv.

Control dependencélhe conditions involving &nv
variable may restrict the values of the variable along
their true/false branches. For exampleh is a cnv
variable before line 33 but becomes a row vari-

(ii)

We present a data flow analysis for identificationcof/

variables in an intraprocedural setting which can be easily
lifted to interprocedural setting.

Let N be the set of nodes in the control flow graph of the

program being analyzed, aiMibe the set of program variables.

able on lines 34 and 36, because the condition inye defineS = {CNV, nCNV, nCN\t, nCN\t }, as shades of

line 33 constrains the range of valuesabf Further,
the values ofch at these points (entry points of

statements at lines 34 and 36) are complementary.

We use this fact later in our analysis to retrieve the
cnv status ofch at the later points (e.g. points at
lines 38 and 39) which are not under the influence
of the same condition. That i€h becomes anv
variable again at these points (line 38 and 39).
Note that every condition may not restrict the value.
For example, withf2 as the calling context, the

the cnv status of a variable € V at a noden € N, where

e CNV: vis acnv variable.

e NCNV: v is not acnv variable due to data dependence
on a nonenv variable or expression.

e NCNV, (resp.nCN\£): v is not acnv variable due to
control dependence (when its values are constrained along
the paths reachable frotnue (resp.falsg branch of a
condition).

condition at line 22 does not restrict the values of We use following notational conventions:
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Fig. 3: Lattices for computingnv variables using data flow analysis

e Mappingstat = V — S relates a variabley € V to its
cnv statusse S.

e 0 ranges over the seA = 25 and thus it represents
a mapping from variablesVj to cnv status §). a(v)
returns the status of a variablein the mappinga, and
a[v— 9| updates the status efto s in the mappinga.

e PredicatdsCNV (expr, a) asserts that expressiespris
acnv expression with given a mapping et

e Formne N, e=m— n denotes an edge from node
to n. The label of this edge is denoted bgbel(e) or
label(m— n). We assume that
o label(e) = *, when e is an unconditional edge.

o label(e) = true, whene is thetrue branch ofm.

o label(e) = false whene is thefalse branch ofm.

o the conditional edge fronswitch to its first caseis
labeled adrue, while the edges from thswitchto its
othercasesare labeled afalse

11. if(b == 10)
1 voi d foo(){ 12. assert(v !'= 0);
2 b =0; 13.
3 if(v == 1) { 14. if(x < 100)
4. a = 10; 15. assert(x < 50);
5 b = 10; 16.
6 } 17. if(v == 1)
7 18. assert(a != 0);
19.}

Fig. 5: Impact ofmaymustcnv variables

C. ldentification of Redundant Verification Calls

We identify an assertion verification c8l(Ay, ) as redun-
dant when all assertion variables Af belong tocin(n, f).
Using this criterion, the cally/(Agg, f3) andV (Agg, f2) de-

o Function pred(n) returns the predecessor nodes of ascribed in the motivating example (Sectloh 11) are idendifis

given noden in the control flow graph.

1) Lattices.: Our analysis computes subsetssbét flow-
sensitively at each nodee N, and the lattice of these values
is (A=2%% Mp). As stat = V ~ S is defined in terms of
lattice (S, Ms), the meet operationy is defined in termsls
as shown below.

vxy€eA: xray={(v (sfss)) | (vs) €x (vS) €y} (1)

Figure[3a (resp_3b) presents the latti& (ls) to compute
themaycnv (resp.mustcnv) variables. Thel element in the
lattices is a fictitious value used as an initialization. Theet
of NCNVy and nCN\W& results inCNV. That is, status of/ is
restored after the effect of a controlling condition whichsh
markedv to be nCNV; (resp.nCN\t) along itstrue (resp.
falsg branch. Thel element in Figuré_3a (computingay
cnv variables) iCNV indicating thatv is acnv variable along
some path. Thel element in Figur€ 3b (computingustcnv
variables) isnCNV indicating thatv is not acnv variable if it
is not acnv along any of the paths.

2) Data Flow Equations.:Figure[4 shows the data flow
equations. Note that in Equatidh 7, the status of a variable
is changed tmCNV; (resp.nCN\£) as an effect of condition
v expr, if and only if (a) v has its status a€NV before to
the condition, (b)expris not acnv expressionand (c) the
edge is labeled asue (resp.false).

redundant verification calls (RVCs). This is becawusnome
cIn(38, f3) anddenome cIn(38, f2) when computed amay
cnv variables. Further, the third cAl(Ags, f1) is not identified
as an RVC sincelenom¢ ciIn(38, f1). We prefer requiring all
assertion variables to benv variables even though any one
of them satisfying this constraint may be sufficient, beeaus
constraining over all assertion variables is a tighter trains

as compared to requiring any variable to ber& variable.

It is important to note that:

We can not guarantee that an RVC identified by using
cnv variables will always result in a counterexample. For
example, for the program in Figufé 5, tMeA;2, f00) is
identified as an RVC since the assertion variables a
mustcnv variable at line 12. This is a false identification
becausé\;, always holds. Although thenv variables may
not identify all RVCs correctly, we expect a significant
benefit in practice because such cases are rare in practice
Further, a model checking call that is not identified as
an RVC by thecnv variables, also can result in a coun-
terexample. For example, the call(Ass, foo) in Figure

is not identified as redundant becausés not acnv
variable at line 15. However, this call always results in a
conterexample.

a)

This indicates the proposed RVCs identification approach is
imprecise Thus, to measure its effectiveness, we define two
metrics for the RVCs identified bgnv variables.



Letmne N andu,ve V

{(vCNV) |ve V} n = StartNode
=19 [']Edgen ,n(Outm) otherwise )
mepred(n)
Out,, = update (Inp, n) 3)
X[v— nCNV] n:v=constant
update (X,n) = ¢ X[v+— X (u)] n:v=u 4)
Assign (X, v, expr) n:v=expr
: _ [X]vi=nCNV]| iISCNV (exprX) = false
Assign (X, v.expn) = {X [V CNV] iSCNV (exprX) =true ®)
X edgem— n is unconditional
Edgem . (X) = {Cond (X,v,label(m— n),expr) edgem— n is conditional, wheren: v expr ©
X[v— nCNV] X (v) =CNV andlbl =true andisCNV (e, X) = false
Cond (X,v,Ibl,e) = ¢ X|[v— nCN\£] X (v) =CNV andlbl = falseandisCNV (e X) = false @)
X otherwise

Fig. 4: Data flow equations for computiranv variables.

possibility of spurious inclusion of variables in the setithW

number ofcorrectly identified RVCs under-approximation, we may identify fewer RVCs but with

Precision = e — ; . . ;
total number of identified RVCs increased accuracy because every variable included inethe s
_ - is more likely to be acnv variable although we may have
Recall = number ofcorrectly identified RVCs missed some genuirenv variables.

number of actual calls violating the assertions ) o ]
To see the impact of over-approximation of execution

1) Impact of maymust approximation and over- paths, consider the example in Figlde 5 for whiohistcnv
identify a larger number of RVCs (higher recall) as comparec@ndV (A12, foo) as an RVC whereas is guaranteed to be 1
to the RVCs identified by referring to thmaustcnv variables, ©n line 12. Since the condition on line 11 does not involve

but with lesser accuracy (precision). To understand thi¢ (Or v is not modified earlier), our analysis assumes that
difference, consider the following examples: is unconstrained. Effectively, it considers an executiathpn

which line 12 is executed but line 5 is not executed. Cleaoly n
¢ Identifying more RVCs: As observed in the motivating such execution path is possible because every path thagass
example (in Sectiohlll), verification callé(Agg, f3) and  through line 12 must necessarily pass though line 5 also.
V(Ags, 2) are identified as RVCs by theaycnv vari-
ables. However, they are not identified as redundant if 2) Influence of cnv  Analysis on False Positives
we use themustcnv variables becausdenomis not a  Elimination: Since the set ofcnv variables computed
mustcnv variable in any of the calling contexts. using data flow analysis is an over-approximation tiafly
e Lesser accuracy: For the code in Figlrk 5, the calcnv variables, some nooav variables (likea andv in Figure
V (Asg, f00) is identified as an RVC by theay-cnv vari- at the assertion pointdg and Asp respectively) may be
ables. This is a false identification because the call neveieported ascnv variables. Due to such false reporting, we

results in a counterexample. This call is not identified agend up eliminating more model checking calls than we ideally
redundant by thenustcnv variables. should have. This has the effect of missing out on resolution

of some warnings that could have been eliminated as false
The influence ofmay and mustcnv variables on RVCs positives had we been able to compute setmi variables
is different because of the nature of approximations usegrecisely. The consequences in false positives eliminatio
in the two computations. Anay analysis over-approximates (FPE) are illustrated in Figui€ 6. Hence, we define below two
the set ofcnv variables whereas anust analysis under- metrics for measuring the effect of skipped RVCs in efficient
approximates it. With over-approximation, we may declarefalse positives eliminationefPE) by comparing it with the
more RVCs although with lesser accuracy because of theriginal approach of false positives eliminatiofREorig).



All variables used in Candidate warnings
[ | assertions for warnings || Allcalls to model checker [ 1 for resolution
w Over-approximated w Calls identified as RVCs
cnv variables &\\ due to imprecision - Unresolved V\{_arr)ing_s due
: i : i i i to spurious elimination
777 Truly cnv variables %%Tjdnlggﬁ Sg!:]s@tr?vb\?alr?:g}gged as of model checker calls

Fig. 6: Influence ofcnv analysis on FPE. IEnv variables could be computed precisely, the ring betweenvibenner circles
(shaded with) in all the three pictures is most likely to vanish.

Time taken ineFPE TABLE I: Experimental results summary

Ti ing=1-=
'me saving Time taken byFPEqig

%

Verification model % o %
o False positives eliminated ieFPE setting e-FPE . counter- | elimi-
Elimination loss = 1 — — i i checking les| "M | Lation
False positives eliminated HyPEorig (warnings | setings |~ ., " | examples | g
processed) ; reduction loss
It is intuitive that the maycnv variables will contribute skipped
more towards these metrics as compared to rhestcnv SCMS-DZ-1 | eFPEns | 3415| 66.67| 4185 | 000
variables. (41) eFPEnay 36.59 71.43 47.60 0.00
SCMS-Dz-5 eFPEnust 35.06 48.78 44.67 0.00
(41) eFPEnay 53.25 75.61 69.05 0.00
1V. EMPIRICAL EVALUATION SCMS-AIOB-1 | eFPEnyst 45.99 56.76 | 38.35 0.00
) ] ] o ) (137) eFPEnay 8321 | 10000 | 7181 | 0.00
This section describes our empirical evaluation of the ["scusAIOBS | eFPE. 35.78 2346 | 3498 | 0.00
proposed static analysis. (137) eFPEpay 8934 | 10000 | 8879 | 000
BCM-DzZ-1 eFPEnust 5.13 7.14 5.37 4.55
A. |mp|ementati0n (39) eFPEnay 5.13 7.14 7.84 4.55
BCM-DZ-5 eFPEnust 8.77 26.32 11.14 2.94
We used TCS Embedded Code Analyzer (TCS ECA) [1] (39) eFPEnay 8.77 26.32 | 1111 294
(a static analysis tool) to verify C code, and CBMQC [4] to BCM-AIOB-1 | eFPEnus 51.55 7818 | 4353 | 000
eliminate false positives from the generated warnings. CBM (258) eFPEmay 51.94 78.79 | 4408 | 000
is a Bounded Model Checker for C and C++ programs. We | BCM-AIOB-5 | eFPEns 41.87 7805 | 28.06| 333
chose these tools for our experimentation because we have (258) eFPEnay 4321 7854 | 2867 | 611
prior experience in their usage and they are integrateddn th Over all runs of 49.49 7287 | 3928 | 278
existing tool set[[5], [I2]. The tool set also includes aalic eFPE settings

supported by the analysis framework of TCS ECA, allowing

slicing [11] the code with respect to an input assertion teefo

is verified using CBMC. We implemented a flow- and context-

sensitive data flow analysis in the TCS ECA framework for

computing cnv variables. These variables are computed ing) FPEorig: This is the original setting in which no model
interprocedural setting by using procedure summaries. checking call is skipped as an RVC.

b) eFPEnst This is the setting for efficient elimination of
false positives in which RVCs are identified and skipped
when all variables in an assertion areistcnv variables.
Applications:Two embedded system applications coded inc) eFPEnay: In this setting, RVCs are identified and skipped

C were selected: (i) a smart card management system (SCMS) when all variables in an assertion aray-cnv variables.

(r?:ogluzlee (SBOC&I)'%? éizin(io(rng%_aUtomOb”e battery  control chh of the above three FPE settin_gs is further refingd at
two different levels by varying the maximum allowed calling
Verification Properties: The selected applications were context length (maxCCL): maxCCL = 1, and maxCCL = 5.
verified for two properties — Divide by Zero (DZ), and Array This is because, in our experience, context length of 5 is
Index Out of Bound (AIOB) as these are the most commonlygenerally sufficient when a warning can be resolved as a false
checked properties. positive and CBMC does not usually scale up beyond these

False Positives Elimination (FPE) Setting$he FPE is
carried out in three settings as described below.

B. Experimental Set-up



contexts. Further, in each setting, CBMC was made to timé) FigureY reports the time taken (in minutes with the fiacti

out after 120 seconds of verification time. part ignored) by each of the FPE settings. The presented
time is average time, computed from three different runs of
the same FPE setting to minimize the effect of performance
variations of the used machine. In these results, the time

e We have restricted RVC identification to assertions that SPentin slicing the code with respect to the input assestion
are reachable, sinov variables are computed without ~_ IS not included. . o _
performing reachability analysis. Thus, our analysis mayc) Figurel8 compares the false positives eliminated in edch o
report RVCs for model checking calls that are guaran- _ the settings. _ _
teed to eliminate false positives corresponding to thefd) Figure[9 presents the total model checking calls made in
unreachable assertions. This affects the precision of RVCs_ €ach of the three FPE settings. _
identification and loss in false positives eliminated. Henc €) FigureLID shows the number of calls that have resulted in
in our experiments, to avoid this effect, we have manually ~counterexamples (assertion violations). In these resthies
identified reachable assertions and have restricted our counterexamples reported due to insufficient loop unwind-
measurements to them. ing [12] are not counted.

e The code to be verified isliced separately with respect f) Table[ll presents details about the RVCs identified for the

corresponds to a single assertion. are also provided for two variants of tle=PE settings -
*eFPEnystand *eFPEyay- in which the RVCs are identified
Hardware Configuration:Our experiments are performed when any of the assertion variable israv variable. Results
on a machine with Intel Core i7-4600U CPU @ 2.10 GHz of these settings are discussed in Sedfion IV-D3.
2.70 GHz, 8 GB RAM configuration, and having Windows 7

AssumptionsWe have made (and ensured), the following
assumptions for each of the above three FPE settings.

Enterprise SP1 as the operating system. D. Results Discussion (Observations)
Our measurements are summarized in tafles I[@nd II. We
TABLE II: Details on identification of RVCs observe that:
Verifi- Counter a) TheeFPEsettings €FPEnystandeFPEyay), on an average,
cation example oFPE Identi- | Correctly reduced the total model checking calls by 49.49%, and
setting calls tings fied | identified this in turn, reduced the false positives elimination time
(warnings in seting RVCs | RVCs by 39.28%.
processed) | FPEyig b) There is a large number (58%) of the model checking calls
eFPEnust 14 14 in FPEqrig that result in the counterexamples. However,
SCMS-DZ-1 21 | €FPEmust 15 15 these calls are reduced to 31% of the total model checking
(41) eFPEnay 15 15 calls in theeFPE settings (refer to figurds 9 andl10). Also,
*eFPEnay 18 18 on an average, the model checking calls that resulted in
eFPEnust 63 63 counterexamples are reduced by 72.87%.
SCMS-AIOB-1 111 | "€FPEmust 67 66 c) Overall, there are 21 false positives (out of 754) thatewer
(137) eFPEnay 114 111 eliminated inFPEyig but not in theeFPE settings. That
*€FPEnay 115 111 is, the above speed up (39.28%) is achieved at the cos
eFPEnust 2 1 of elimination loss of 2.78%. Our manual analysis of these
BCM-DZ-1 14 | €FPBnust 2 1 21 cases indicated that, their corresponding model chgckin
(39) eFPEnay 2 1 calls are identified as redundant (when they were not) due
*eFPEnay 2 1 to the imprecisely computednv variables. Had we been
eFPEnust 133 129 able to compute thenv variables more precisely, the loss
BCM-AIOB-1 165 | €FPEmust | 140 132 would have been close to zero.
(258) eFPEnay 134 130 d) Referring to Tablg]l, on an average, meistcnv andmay
*eFPEmay 139 132 cnv variables identify 76% of the total model checking

calls resulting in counterexamples (recall=76%) with a
precision of 97.3%.

e) The time taken to identify the RVCs was negligible as
The experimental results are presented in below described compared to the time saving achieved.
tables and figures, where a code verification setting is @éenot

by applicationpropertymaxCCL (like SCMS-AIOB-1, and 1) Trade-off: Table[]l shows that it is always possible to
BCM-DZ-5). reduce the total time spent in model checking the assertions

although the quantum of reduction may vary from minutes to
a) Table[l presents the number of warnings processed, arftburs. However, this performance improvement comes at the
percentage of — (i) model checking calls avoided, (ii) re-cost of missing elimination of 21 warnings which need to be
duced counterexample calls, (iii) time saved, and (iv) Inss manually inspected. The time spent in this depends on variou
eliminated false positives — in each of teEPE settings.  factors like type of warnings, code complexity, reviewirkgls
Further, it also presents these percentages computed owvefr the user, and tool support used. This demonstrates ar
all runs of theeFPE settings (percentage of the total of the interesting tradeoff: on the one hand, we could let the model
numbers in next described figures). checker be more precise and find all false positives; on the

C. Experimental Results
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other hand, we could let a few false positives slip through fo variables. This explains the trade-off between speed-up an
efficiency of the process, but then we may need to spend timprecision in false positives elimination when ttrev variables
in their manual inspection. are computed at the different levels of over-approximation

2) May-cnv Variables Vanustcnv Variables: Tablegl and 3) Constraining All Vs. Some Assertion VariableEable
[Mindicate that, on SCMC application, theay-cnv variables [lindicates that, requiring a single assertion variablédoéoa
identify significantly more number of RVCs as compared tocnv variable identifies more RVCs as compared to the RVCs
the mustcnv variables while eliminating the same number identified when all variables are required to drev variables.
of false positives that are eliminated Iyustcnv variables.  All false positives eliminated byefPEqn,st and eFPEnay) are
However, for BCM applicationmaycnv analysis identifies also eliminated by @FPEnyst and *eFPEy;,y), thus making
comparable number of RVCs although it fails to eliminatethe requirement of some assertion variable taive variables
some (5) false positives that are eliminated tmustcnv a practical choice.



E. Generalization of Experimental Results directly by identifying if the corresponding verificatiorarc
ossibly result in futile counterexample. This technigoging
rthogonal, can be combined withl! [6], [12], [14] to improve
heir performance.

The experiments are performed using two applications an
two properties to demonstrate the possibility of improvingt
efficiency considerably with a negligible loss of precision
false positives elimination. It would be interesting to foem

a wider range of experiments using a large set of benchmarks VI. CONCLUSION AND FEUTURE WORK
and verification properties to assert the behavior and tféec
ness of the proposed apporach. Model checking of an assertion whose variables can take

houah th . ¢ d usi .any arbitrary value is most likely to generate a countergpam
Even thoug I the explerlments are pﬁr orme “Z'ng Propricaise positive elimination using the approach of contepaex
etary static analysis tool (TCS ECA), the proposed approacjy, jnherently requires the input variables of a procedare

canl t?reh.‘"‘pp”sd on theh\év]arningsbgljeneratgd bi/j any off—théc—jsT ake arbitrary value, ironically generating spurious devex-
tool. This is because th variables used to identify a model 5565 in many cases. We have used these observations to re

checking call as a redundant are independant of the statig,ce the number of the spurious counterexamples by praposin
analysis tool used. However, the gain in performance may vary,o concept of complete-range non-deterministic valges)

depending on the static analysis tool and model checkerin th o japies Thecnv variables are used to identify and avoid

combination because static analysis tools are known to haveyundant verification calls, and thus improve performance

different false positive rate, and model checkers vary &irth - 4 ring the model checking-based elimination of false st
performance and scalability.

In the proposed approach, a warning is eliminated only In our experiments, we observed a large number of model

: 2 T 0
when it is guaranteed to be a false positive. All the remginin checking calls resultmg in countergxamples (around 53/" of
e total model checking calls). It is because often vaesbl

. t
warnings must be manually analyzed to ensure correctness é& ; ! .
the warning points. Thus, the overall approach is sound an t_thelr values from outside the calling context. We.could
avoid, on an average, 76% of these calls (recall) using the

applicable to both crictical and non-critical systems @lik cnv variables and that with a precision of 97.3%. When the
cnv variables are computed more precisetyust Vs may),
V. RELATED WORK the precision in identifying such calls increases but trealte

Broadly, static analysis and model checking have beeflecreases, indicating an interesting trade-off betweerfaise
combined in two ways to improve the precision of staticPositives eliminated and efficiency achieved. Our expentsie
analysis. In the first category, the information is iteralyy ~demonstrate that this trade-off can be useful in practice to
exchanged between the two techniqugs [8], [8], [9]. Formprove efficiency of false positives elimination constaly
example, Brat et al[ 3] and Junker et all [9] have combinedVith a negligible loss in precision. Further, this tradé-cdn
these two in such a way static analysis component itergtivelPe possibly exploited at different levels by computing ¢ine
exchanges information with the model checker. In the secondariables of varying precision. That isjaycnv variables can
category, static analysis and model checking are cascaged b€ used when faster elimination of false positives is reglir
using one after the other in a fixed order [6],/[12],][14].][15] While mustcnv variables are suited when higher precision is
[17], [19]. In this approach, static analysis is used firstl an demanded.
later model checking is used to eliminate false positivesfr

. . Our empirical measurements show a significant gain
the generated analysis warnings.

(39.28%) in performance by avoiding 49.49% of the total
The cascading approach is more relevant for the commodel checking calls. This gain is achieved because the
parison with our approach because it generates an asserticedundancy is computed in bulk using a light-weight static
corresponding each warning reported by static analysisto banalysis whereas a model checker consumes a lot of time
checked later by model checking. Wang et [al.l [19] have usewhile verifying these redundant calls individually. Hoveey
such a combination to automatically detect code vulndrabil the gain comes at the cost of missing elimination of some
ties. Further, Rdiger [15] has combined data flow analysis and(2.78%) false positives. This is due to the inability to cartgp
model checking to improve the security vulnerability détaz. ~ thecnv variables precisely, and is a downside of our appproach

Post et al.[T4] have adapted the approach to expand tl]bﬁi(i)ae%stgde.a(:h of the missed false positives needs to be fyanual

calling context incrementally in order to deal with the seal
bility. In these combinations, calls to the model checkers a In near future, we plan to understand how the proposed
made without checking if they are redundant and the effigiencapproach behaves with a larger set of applications and -verifi
aspect is ignored. In our previous woik [12], for the effitien cation properties by performing a wider range of experiment
elimination of false positives, we partitioned the geredat Further, we aim to observe the effect of the precision of the
assertions and verified only one representative asseroon f commerical off-the shelf static analysis tools on the traffe
each partition. However, it still requires making numerousin false positives elimination.

calls to the model checker while verifying the represemati

assertion by incrementally expanding the calling contégt.

the best of our knowledge, only slicing [6], [19] and assersi ACKNOWLEDGEMENT

O " -
partitioning [12] have been used for the efficiency purpose. We thank the anonymous reviewers for their thoughtful

While we also follow a similar approach as used in theand detailed comments on the paper. We also thank Gabrielle
above combinations, we avoid making a model checking calCarrozza for her help in shepherding the paper.
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APPENDIX
FPE using Context Expansion Approach

The call to process an asserti8p belonging to procedure
f, during false positives elimination using calling context
pansion, is invoked agrocessAssertiddy,, f,0). The warning
corresponding to the assertiéq is eliminated only when this
invocation returnserificationSuccessThe maximum allowed
calling context length during context expansion is indicalby
maxCCL.

Algorithm 1 False Positives Elimination using Calling Context
Expansion

procedure PROCES# SSERTIONA,, currFung level)
result:=verifyAssertionf\,, currFunc);
if result# “counterExample’then
return result,
level = level + 1,
if level = maxCCL then
return “Level_Limit_Reached”;
if currFuncis an application-entry functiothen
return result,
funcCallers= get callers of functiorcurrFunc
for caller € funcCallersdo
result = runFPER,, caller, level);
if result=# “verificationSuccessthen
return resulg
return “verificationSuccess”;

procedure VERIFYASSERTIONA,, currFung

Verify Ay in the context ofcurrFunc

if counter example is generatéten
return “counterExample”;

if A, is verified successfullyhen
return “verificationSuccess”;

if no decision is made in given time limtihen
return “timeOut”;
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