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Abstract—Bug detection using static analysis has been found
useful in practice for ensuring software quality and reliability.
However, it often requires sifting through a large number of
warnings. This can be handled by generating an assertion
corresponding to each warning and verifying the assertion using
a model checker to classify the warning as an error or a
false positive. Since model checking over larger code fragments
is non-scalable and expensive, it is useful to model check a
given assertion with a small calling context length. For this, the
variables receiving values from outside the context are initialized
with arbitrary values generated by non-deterministic choice
functions. The calling context length is then gradually increased
on a need basis to include callers higher up in the call chains.
While this aids scalability by keeping the calling context as small
as possible, it requires multiple calls to model checker for the
same assertion, requiring a considerable amount of time.

We present a static analysis to expedite false positive elimina-
tion. It is based on the following observation: When the variables
involved in an assertion are allowed to take arbitrary values at
the point of assertion, the assertion is most likely to be violated
by some or the other combination of values. In such cases, usage
of a model checker is redundant as it does not aid in resolution
of the corresponding warning. Our data flow analysis identifies
(an over-approximated set of) such variables using a novel lattice
so that model checking of assertions involving such variables can
be avoided. Our empirical evaluation demonstrates that, on an
average, the proposed static analysis avoids 49.49% of the total
model checking calls, and it reduces the false positives elimination
time by 39.28%. However, this gain is achieved at the cost of
missing 2.78% false positives which could have been eliminated
otherwise.

I. I NTRODUCTION

Static analysis [10], [13] and model checking [2], [5]
have widely been used in achieving software quality and
reliability by facilitating early detection of defects. These two
techniques are complementary on the metric of scalability,
precision, and efficiency [7], [16], [18]. Static analysis is
able to verify very large and complex systems whereas model
checking often faces scalability issue as the system size and
complexity increases. Further, static analysis generatesmany
false warnings, commonly referred to as false positives [7],
whereas model checking is precise in property verification
when it scales. Also, the software verification using static
analysis is generally far more efficient as compared to the
verification using model checking.

Given that verification problems are undecidable in gen-
eral, manual review of warnings is inevitable to fulfill the

practical needs of constructing trusted software. The costof
manual review can be reduced by increasing the precision of
verification on the one hand and scaling it to larger programs
on the other hand. Given the complementary nature of static
analysis and model checking, some approaches [3], [8], [17],
[19] try to combine the two to get the best of both the worlds:
the scalability of static analysis and the precision of model
checking. Among various combinations attempted so far, a
cascaded approach [6], [14] uses static analysis first and then
the generated warnings are processed by a model checker to
eliminate the false positives. This processing involves:

• Generating an assertion corresponding to each warning,
where the assertion relates to the property (correctness
or safety) being checked at the warning point. That is,
a warning is a false positive (the warning point issafe)
when its corresponding assertion holds.

• Verifying the generated assertion using a model checker
to reduce the list of warnings needing manual review.

This approach of combining static analysis with modeling
checking has been found to be very effective in eliminating
a significant number of false positives without being affected
by the non-scalability of the model checking [6], [14], [12]. It
uses the following insight for scaling model checking: Since
model checking over larger code fragments is impractical, it
is useful to model check a given assertion with a small calling
context in which the variables receiving values from outside
the context are initialized with arbitrary values generated by
non-deterministic choice functions [6] (these functions are
described in detail in Section III-A). The calling context is
then incrementally expanded on a need basis to include callers
higher up in the call chains (as described in Algorithm 1 in
Appendix). While this aids scalability by keeping the calling
context as small as possible, it requires multiple calls to model
checker for the same assertion which ironically increases the
time required [12]. The following factors contribute to the
inefficiency of the overall approach:

i) Static analysis issues a large number of warnings due to
its imprecision.

ii) Model checking is expensive due to the state space
explosion.

iii) Avoiding the state space explosion (and in turn non-
scalability) in model checking by incremental expansion
of calling contexts generally leads to multiple calls to
model checker for the same assertion.

In this paper, we address the third source of inefficiency



1. const int arr[] = {0, 2, 5, 9, 14};
2. int ch, var, factor;
3.
4. void f1(){
5. unsigned int i, j;
6.
7. i = lib1();
8. j = lib2();
9. var = lib3();
10.
11. if(i < j && j < 5){
12. factor = arr[j] - arr[i];
13. f2();
14. }
15. }

21. int f2(){
22. if(var == factor)
23. f3(var);
24. ...
25. }

31. int f3(int p){
32. int a, b, denom = 1;
33. if(ch < 5)
34. denom = p;
35. else
36. denom = 10;
37.
38. assert(denom!=0);
39. a = 100 / denom;//warning
40.
41. if(b < 10)
42. ch = p;
43.}

lib1, lib2, and lib3 are library functions whose code is not available for static analysis. The return-type oflib1, and lib2 is unsigned int, and
for lib3, it is signed int. The assertion at line 38 has been inserted to resolve thedivide by zerowarning reported at line 39.

Fig. 1: Motivating example for false positive elimination.

by trying to minimize the number of model checker calls for
an assertion by eliminating the redundant calls. Incremental
expansion of calling contexts is required when the model
checking in smaller context finds a counterexample. We ob-
serve that, in most cases the counterexample is generated not
because of the values assigned to variables by the statements
in the program but by the non-deterministic choice functions
introduced outside of the context. That is, when the variables
involved in an assertion are allowed to take any arbitrary value
at the point of assertion, the assertion is most likely to be
violated by some or the other combination of values. In such
cases, using a model checker does not aid in resolution of the
corresponding warning and hence is redundant. We are more
likely to resolve a warning by model checking the assertion
in an expanded context in which variables are not allowed to
take all possible values at the point of assertion.

We propose concept of Complete-range Non-deterministic
Values (cnv ) variables to denote the variables taking any
arbitrary value (all possible non-deterministic values),and
use these to identify redundant model checking calls. In
general, computingcnv variables is undecidable because of
the static approximation of execution paths by control flow
paths. Therefore, we can only compute an approximation of
cnv variables. There are two kinds of approximations in play:
(a) over-approximation of execution paths by control flow
paths, and (b) over-approximation or under-approximationof
the set ofcnv variables at a program point as amay or a
must property. The first kind of approximation is inevitable.
We have defined a data flow analysis with a novel lattice
structures for the second kind of approximations. Due to these
approximations,

• we may end up eliminating more model checking calls
than we ideally should.

• we may end up missing some redundant model checking
calls that we ideally should not.

We have studied these effects empirically and found them
to be relatively insignificant compared to the benefits. In par-

ticular, our empirical evaluation using two embedded system
applications (of sizes 40 KLOC and 50KLOC) indicated that,
on an average, the proposed static analysis identifies model
checking calls violating the assertion with a precision of
97.3%. This identification reduces the total model checking
calls by 49.49% and the false positives elimination time by
39.28%. However, it is achieved at the cost of missing 2.78%
of false positives which could have been eliminated otherwise.
This elimination loss is due to the imprecision in computation
of cnv variables. The empirical evaluation also demonstrated
trade-off between efficiency and precision in false positives
elimination when thecnv variables are computed at different
levels of over-approximation.

This paper makes the following research contributions.

• It introduces the notion ofcnv variables.
• It presents a light weight data flow analysis to compute

the cnv variables, and uses these variables to identify
redundant modeling checking calls during elimination of
false positives.

• It exploits the trade-off between the precision and eff-
ciency of false positives elimination and demonstrates the
possibility of improving efficiency considerably with a
negligible loss in precision.

Outline: Section II provides a motivating example. In
Section III, we present a static analysis to identify redundant
model checking calls by computing thecnv variables. Details
about the implementation, experimental set up and results are
provided in Section IV. Section V presents related work, and
finally we conclude in Section VI with future work.

II. A M OTIVATING EXAMPLE

Consider the example in Figure 1 whose verification using
static analysis reports adivide by zerowarning at line 39.
This warning is a false positive: The only way the variable
denomcan be zero is if the variablep is zero (line 34). This
requires the actual argumentvar of the call to f3 to be zero
(line 23) which depends on the values of the variablefactor



(line 22). Given the initialization of arrayarr (line 1), for any
combination of index variables satisfyingi < j, the RHS of
the assignment at line 12 can never be zero, ruling out any
possibility of factor, and hencedenom, being zero.

In order to handle this warning, an assertion has been added
(line 38). Let An denote an assertion at linen, andV(An, f )
denote its verification in the calling context beginning with
proceduref . Then model checking ofA38 using the approach
of context expansion proceeds as follows:

i) The first call to model checker isV(A38, f 3) with non-
deterministic values assigned to the variables receiving
values from outside the context off 3. These values are
assigned at the start off 3 (shown in Figure 2 and also
described in Section III-A). The model checker trivially
finds a counterexample by choosing the value ofp as 0.

ii) The next call V(A38, f 2) expands the calling context
with non-deterministic values assigned to the variables
receiving values from outside the context off 2 (shown
in Figure 2). The model checker once again reports a
counterexample by choosingvar and factor to be 0.

iii) The third callV(A38, f 1) assigns non-deterministic values
to the variables receiving values from outside the context
of f 1 (shown in Figure 2). Now regardless of the values
of i and j, the model checker fails to find value 0 for
factor (and in turn tovar and p), and hence it declares
that the assertionA38 always holds. Thus, the verification
call V(A38, f 1) eliminates the warning at line 39.

It is easy to see that the model checker is invoked multiple
times for the same assertion. Further, the first and second
calls do not contribute in eliminating the false positive. These
calls generate counterexamples because the values assigned by
non-deterministic choice functions reach line 38 (the assertion
point) unconstrained. That is, variabledenomis a cnv vari-
able at line 38 for the model checker callsV(A38, f 3) and
V(A38, f 2). Hence these calls are provably redundant.

Note that the property that a variable may take any arbitrary
value from its complete range of values is orthogonal to
whether it is initialized or not. For example, in Figure 1:

• Variable i has been initialized on line 7 but it is acnv
variable at line 10 because the library functionlib1 may
return any value. On the other hand the same variable is
not a cnv variable at line 12 because it cannot take any
value greater than 3.

• Variable b is uninitialized in proceduref 3. It is a cnv
variable on lines 33 to 39 but not on line 42 because it
cannot take any value greater than 9 when the execution
reaches line 42.

Thus the information computed bycnv variables analysis is
incomparable with the information computed by a possibly
uninitialized variables analysis and the two analyses are dif-
ferent.

III. A S TATIC ANALYSIS FOR RVCS IDENTIFICATION

This section describes our approach of identifying redun-
dant verification calls through computation ofcnv variables in
the program. We begin by explaining some terms and concepts
by referring to the code sample in Figure 1.

A. Basic Terms and Concepts

1) Assertion Variables:A given assertionAn is a boolean
expression describing a constraint on the values of the variables
occurring in the expression. This constraint must be satisfied
every time statementn is executed. The variables occurring
in an assertion are calledassertion variables. For example,
denomis the only assertion variable used inA38.

2) Input Variables:The computations in a procedure could
depend on global variables and formal parameters which take
values from the calling contexts. Such variables are termedas
input variablesof the procedure. A variablev is identified as
an input variable of proceduref if there exists a path inf ,
on which v is read before it is written to. Since we consider
interprocedural paths starting inf , they include the paths in
callees of f transitively.

Note that the input variables

• are procedure specific (e.g.factor is an input variable for
f 2 but not for f 1),

• may be indirectly accessed in a (transitive) callee (e.g.ch
is an input variable for bothf 1 and f 2 though it is read
only in f 3), and

• must be mutable variables (e.g.arr is not an input variable
for f 1 because it is aconstantarray.)

3) Non-deterministic Choice Functions:As mentioned in
Section II, verification of assertionAn in the context of proce-
dure f is denoted byV(An, f ) whereAn appears in a statement
either in f or one of its transitive callees. For scalability of
verification, f is chosen as close to the assertion in the call
hierarchy as possible and the callers off are ignored. However,
this comes at the cost of precision—since the code assigning
values to input variables off is ignored,An should be verified
for arbitrary values of the input variables. If the assertion is
verified successfully, it holds for any arbitrary value and hence
by implication, for the original values in the program.

For this purpose, arbitrary values are assigned to the input
variables by using non-deterministic choice functions. Figure
2 lists the non-deterministic choice functions assigning values
to the input variables of the procedures in Figure 1. The range
of the non-deterministic values generated by these functions is
determined by their return-types (not shown).

During a verification callV(An, f ), a model checker gener-
ates all possible combinations of values of the input variables
of f , and evaluates the assertionAn for every combination. If
the assertion is not violated by any of the combinations, the
model checker reports successful verification of the assertion.
Otherwise, the model checker provides a counterexample in the
form of program trace that violates the assertion. Henceforth
in the paper, the termscounterexampleand assertion violation
are used interchangeably.

4) Complete-range Non-deterministic Value (cnv ) Vari-
ables: The values assigned to input variables of a procedure
by the non-deterministic choice functions, at the start of the
procedure, further may get assigned to other variables in the
procedure as a consequence of data-dependence. These values
also may get constrained through control or data-dependence.
Let Rnp be the range of the non-deterministic values that a
variablev may take at some program pointp, and letRa be



// procedure f1
ch = nondet_char();

// procedure f2
var = nondet_int();
ch = nondet_char();
factor = nondet_int();

// procedure f3
p = nondet_int();
ch = nondet_char();

Fig. 2: Examples of functions assigning non-deterministicvalues

the range of values thatv is allowed to take at any program
point (that is,Ra is the range of data-type ofv). A variablev
is called acnv variable at a program pointp only if Ra=Rnp.
Thus, we categorize the variables taking the complete rangeof
the non-deterministic values ascnv variables, and the other set
of variables (taking partial set of such values or fixed values
assigned by the program statements) as non-cnv variables.

The factors that influence computation ofcnv variables are
described below.

(a) Context sensitivity. The assignments involving non-
deterministic choice functions are introduced at the start
of the procedure that begins the calling context under
consideration. Thus, a variable may be acnv variable
for a specific calling context but not for some other
calling context. For example,factor is a cnv variable
in the context of f 2 at all program points belonging to
proceduref 3, since it directly receives the complete range
of the correspondingly assigned non-deterministic values.
However, when we extend the context to begin atf 1,
factor ceases to be acnv variable at the same points (in
proceduref 3), because the values assigned at line 12 are
computed using constant array elements.

(b) Flow sensitivity.The range of the values of a variable is
program point-specific and it may be different at different
program points. For example,denom is a cnv variable
at the exit point of the statement at line 34, because it is
assigned with the value of acnv variablep. However, it is
not acnv variable at the exit point of the statement at line
36, since it is assigned with 10. Flow sensitivity influences
the cnv status by the following two dependencies:

(i) Data dependence. A cnv (resp. non-cnv ) variable
at a program point may influence the values of a
non-cnv (resp.cnv ) variable and convert its status.
For instance, with f 3 as the calling context, the
assignment statement at line 34 changes status of
denomfrom non-cnv to cnv .

(ii) Control dependence. The conditions involving acnv
variable may restrict the values of the variable along
their true/falsebranches. For examplech is a cnv
variable before line 33 but becomes a non-cnv vari-
able on lines 34 and 36, because the condition in
line 33 constrains the range of values ofch. Further,
the values ofch at these points (entry points of
statements at lines 34 and 36) are complementary.
We use this fact later in our analysis to retrieve the
cnv status ofch at the later points (e.g. points at
lines 38 and 39) which are not under the influence
of the same condition. That is,ch becomes acnv
variable again at these points (line 38 and 39).
Note that every condition may not restrict the value.
For example, with f 2 as the calling context, the
condition at line 22 does not restrict the values of

var or factor.
We usecIn(n, f ) (resp. cOut(n, f )) to denote thecnv
variables at the entry (resp. exit) point of statementn and
with proceduref as the calling context.

(c) May/must reachability.The cnv status of a variablev
at a program point depends on the paths along whichv
is cnv . When v is cnv along every path reaching the
program point,v is said to be amust-cnv at that point.
If it is cnv along some but not necessarily all paths
reaching the program point, it is amay-cnv . For exam-
ple, when cIn(38, f 3) are computed asmust-cnv vari-
ables, ch, p∈ cIn(38, f 3) and denom/∈ cIn(38, f 3). Fur-
ther, whencIn(38, f 3) corresponds tomay-cnv variables,
denom∈ cIn(38, f 3).

5) Complete-Range Non-deterministic Value Expressions:
We extend the concept of non-deterministic value variablesto
expressions. An expressione occurring in statementn is said
to be acnv expression in the calling context of proceduref if
its evaluation using thecnv variables at the same point (entry
of n) and in the same context (f ), results in complete range
of values ofe. For example, assuming variablesx, y, andz to
be integers,

• expressions(x+10), (x++), and (x+y) in statementn
arecnv expressions whencIn(n, f ) = {x,y,z}.

• expressions(x+10), and (x++) in statementn are not
cnv expressions whencIn(n, f ) = {y,z}.

• expressions(x/100), (x%2), and (100) in statementn are
not cnv expressions whencIn(n, f ) = {x}.

• the arithmetic expression (arr[ j]−arr[i]) in statement at
line 12 in Figure 1 is not acnv expression with respect
to anycnv variables.

B. Computation ofcnv Variables

We present a data flow analysis for identification ofcnv
variables in an intraprocedural setting which can be easily
lifted to interprocedural setting.

Let N be the set of nodes in the control flow graph of the
program being analyzed, andV be the set of program variables.
We defineS = {CNV, nCNV, nCNVT , nCNVF}, as shades of
the cnv status of a variablev∈ V at a noden∈ N, where

• CNV: v is a cnv variable.
• nCNV: v is not a cnv variable due to data dependence

on a non-cnv variable or expression.
• nCNVT (resp. nCNVF ): v is not a cnv variable due to

control dependence (when its values are constrained along
the paths reachable fromtrue (resp. false) branch of a
condition).

We use following notational conventions:



⊤

nCNVTnCNVTnCNV nCNVF

CNV

(a) may-cnv variables

⊤

nCNVT nCNVF

CNV

nCNV

(b) must-cnv variables

Fig. 3: Lattices for computingcnv variables using data flow analysis

• Mapping stat = V 7→ S relates a variablev ∈ V to its
cnv statuss∈ S.

• α ranges over the setA = 2stat and thus it represents
a mapping from variables (V) to cnv status (S). α(v)
returns the status of a variablev in the mappingα, and
α[v 7→ s] updates the status ofv to s in the mappingα.

• PredicateisCNV (expr, α) asserts that expressionexpr is
a cnv expression with given a mapping setα.

• For m,n∈ N, e= m→ n denotes an edge from nodem
to n. The label of this edge is denoted bylabel(e) or
label(m→ n). We assume that
◦ label(e) = *, when e is an unconditional edge.
◦ label(e) = true, whene is the true branch ofm.
◦ label(e) = false, whene is the falsebranch ofm.
◦ the conditional edge fromswitch to its first case is

labeled astrue, while the edges from theswitch to its
othercasesare labeled asfalse.

◦ Function pred(n) returns the predecessor nodes of a
given noden in the control flow graph.

1) Lattices.: Our analysis computes subsets ofstat flow-
sensitively at each noden∈ N, and the lattice of these values
is 〈A= 2stat,⊓A 〉. As stat = V 7→ S is defined in terms of
lattice (S, ⊓S), the meet operation⊓A is defined in terms⊓S
as shown below.

∀x,y∈ A: x⊓Ay=
{(

v,
(

s⊓Ss′
)) ∣

∣ (v,s) ∈ x,
(

v,s′
)

∈ y
}

(1)

Figure 3a (resp. 3b) presents the lattice (S, ⊓S) to compute
themay-cnv (resp.must-cnv ) variables. The⊤ element in the
lattices is a fictitious value used as an initialization. Themeet
of nCNVT and nCNVF results inCNV. That is, status ofv is
restored after the effect of a controlling condition which has
markedv to be nCNVT (resp. nCNVF ) along its true (resp.
false) branch. The⊥ element in Figure 3a (computingmay-
cnv variables) isCNV indicating thatv is acnv variable along
some path. The⊥ element in Figure 3b (computingmust-cnv
variables) isnCNV indicating thatv is not acnv variable if it
is not acnv along any of the paths.

2) Data Flow Equations.:Figure 4 shows the data flow
equations. Note that in Equation 7, the status of a variablev
is changed tonCNVT (resp.nCNVF ) as an effect of condition
v⊕expr, if and only if (a) v has its status asCNV before to
the condition, (b)expr is not a cnv expression,and (c) the
edge is labeled astrue (resp.false).

1. void foo(){
2. b = 0;
3. if(v == 1) {
4. a = 10;
5. b = 10;
6. }
7.

11. if(b == 10)
12. assert(v != 0);
13.
14. if(x < 100)
15. assert(x < 50);
16.
17. if(v == 1)
18. assert(a != 0);
19.}

Fig. 5: Impact ofmay/must-cnv variables

C. Identification of Redundant Verification Calls

We identify an assertion verification callV(An, f ) as redun-
dant when all assertion variables ofAn belong tocIn(n, f ).
Using this criterion, the callsV(A38, f 3) and V(A38, f 2) de-
scribed in the motivating example (Section II) are identified as
redundant verification calls (RVCs). This is because,denom∈
cIn(38, f 3) anddenom∈ cIn(38, f 2) when computed asmay-
cnv variables. Further, the third callV(A38, f 1) is not identified
as an RVC sincedenom/∈ cIn(38, f 1). We prefer requiring all
assertion variables to becnv variables even though any one
of them satisfying this constraint may be sufficient, because
constraining over all assertion variables is a tighter constraint
as compared to requiring any variable to be acnv variable.

It is important to note that:

a) We can not guarantee that an RVC identified by using
cnv variables will always result in a counterexample. For
example, for the program in Figure 5, theV(A12, f oo) is
identified as an RVC since the assertion variablev is a
must-cnv variable at line 12. This is a false identification
becauseA12 always holds. Although thecnv variables may
not identify all RVCs correctly, we expect a significant
benefit in practice because such cases are rare in practice.

b) Further, a model checking call that is not identified as
an RVC by thecnv variables, also can result in a coun-
terexample. For example, the callV(A15, f oo) in Figure
5 is not identified as redundant becausex is not a cnv
variable at line 15. However, this call always results in a
conterexample.

This indicates the proposed RVCs identification approach is
imprecise. Thus, to measure its effectiveness, we define two
metrics for the RVCs identified bycnv variables.



Let m,n∈ N andu,v∈ V

Inn =







{(v,CNV) | v∈ V} n= StartNodel

m∈pred(n)
A
Edgem→n (Outm) otherwise (2)

Outn = update (Inn,n) (3)

update (X ,n) =







X [v 7→ nCNV] n : v= constant
X [v 7→ X (u)] n : v= u
Assign (X ,v,expr) n : v= expr

(4)

Assign (X ,v,expr) =

{

X [v 7→ nCNV] isCNV (expr,X ) = f alse
X [v 7→CNV] isCNV (expr,X ) = true

(5)

Edgem→n (X ) =

{

X edgem→ n is unconditional
Cond (X ,v, label(m→ n),expr) edgem→ n is conditional, wherem : v⊕expr

(6)

Cond (X ,v, lbl ,e) =







X [v 7→ nCNVT ] X (v) =CNV and lbl = true and isCNV (e,X ) = f alse
X [v 7→ nCNVF ] X (v) =CNV and lbl = f alseand isCNV (e,X ) = f alse
X otherwise

(7)

Fig. 4: Data flow equations for computingcnv variables.

Precision =
number ofcorrectly identified RVCs

total number of identified RVCs

Recall =
number ofcorrectly identified RVCs

number of actual calls violating the assertions

1) Impact of may/must approximation and over-
approximation of execution paths:The may-cnv variables
identify a larger number of RVCs (higher recall) as compared
to the RVCs identified by referring to themust-cnv variables,
but with lesser accuracy (precision). To understand this
difference, consider the following examples:

• Identifying more RVCs: As observed in the motivating
example (in Section II), verification callsV(A38, f 3) and
V(A38, f 2) are identified as RVCs by themay-cnv vari-
ables. However, they are not identified as redundant if
we use themust-cnv variables becausedenomis not a
must-cnv variable in any of the calling contexts.

• Lesser accuracy: For the code in Figure 5, the call
V(A18, f oo) is identified as an RVC by themay-cnv vari-
ables. This is a false identification because the call never
results in a counterexample. This call is not identified as
redundant by themust-cnv variables.

The influence ofmay- and must-cnv variables on RVCs
is different because of the nature of approximations used
in the two computations. Amay analysis over-approximates
the set of cnv variables whereas amust analysis under-
approximates it. With over-approximation, we may declare
more RVCs although with lesser accuracy because of the

possibility of spurious inclusion of variables in the set. With
under-approximation, we may identify fewer RVCs but with
increased accuracy because every variable included in the set
is more likely to be acnv variable although we may have
missed some genuinecnv variables.

To see the impact of over-approximation of execution
paths, consider the example in Figure 5 for whichmust-cnv
analysis discovers variablev to be acnv variable on line 12,
andV(A12, f oo) as an RVC whereasv is guaranteed to be 1
on line 12. Since the condition on line 11 does not involve
v (or v is not modified earlier), our analysis assumes thatv
is unconstrained. Effectively, it considers an execution path in
which line 12 is executed but line 5 is not executed. Clearly no
such execution path is possible because every path that passes
through line 12 must necessarily pass though line 5 also.

2) Influence of cnv Analysis on False Positives
Elimination: Since the set ofcnv variables computed
using data flow analysis is an over-approximation oftruly
cnv variables, some non-cnv variables (likea andv in Figure
5 at the assertion pointsA9 and A12 respectively) may be
reported ascnv variables. Due to such false reporting, we
end up eliminating more model checking calls than we ideally
should have. This has the effect of missing out on resolution
of some warnings that could have been eliminated as false
positives had we been able to compute set ofcnv variables
precisely. The consequences in false positives elimination
(FPE) are illustrated in Figure 6. Hence, we define below two
metrics for measuring the effect of skipped RVCs in efficient
false positives elimination (eFPE) by comparing it with the
original approach of false positives elimination (FPEorig).
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Fig. 6: Influence ofcnv analysis on FPE. Ifcnv variables could be computed precisely, the ring between thetwo inner circles
(shaded with ) in all the three pictures is most likely to vanish.
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It is intuitive that the may-cnv variables will contribute
more towards these metrics as compared to themust-cnv
variables.

IV. EMPIRICAL EVALUATION

This section describes our empirical evaluation of the
proposed static analysis.

A. Implementation

We used TCS Embedded Code Analyzer (TCS ECA) [1]
(a static analysis tool) to verify C code, and CBMC [4] to
eliminate false positives from the generated warnings. CBMC
is a Bounded Model Checker for C and C++ programs. We
chose these tools for our experimentation because we have
prior experience in their usage and they are integrated in the
existing tool set [6], [12]. The tool set also includes a slicer
supported by the analysis framework of TCS ECA, allowing
slicing [11] the code with respect to an input assertion before it
is verified using CBMC. We implemented a flow- and context-
sensitive data flow analysis in the TCS ECA framework for
computing cnv variables. These variables are computed in
interprocedural setting by using procedure summaries.

B. Experimental Set-up

Applications:Two embedded system applications coded in
C were selected: (i) a smart card management system (SCMS)
of size 50 KLOC, and (ii) an automobile battery control
module (BCM) of size 40 KLOC.

Verification Properties:The selected applications were
verified for two properties — Divide by Zero (DZ), and Array
Index Out of Bound (AIOB) as these are the most commonly
checked properties.

TABLE I: Experimental results summary

Verification

setting

(warnings

processed)

e-FPE

settings

%

model

checking

calls

skipped

%

counter-

examples

reduction

%

time

saving

%

elimi-

nation

loss

SCMS-DZ-1

(41)

eFPEmust 34.15 66.67 41.55 0.00

eFPEmay 36.59 71.43 47.60 0.00

SCMS-DZ-5

(41)

eFPEmust 35.06 48.78 44.67 0.00

eFPEmay 53.25 75.61 69.05 0.00

SCMS-AIOB-1

(137)

eFPEmust 45.99 56.76 38.35 0.00

eFPEmay 83.21 100.00 71.81 0.00

SCMS-AIOB-5

(137)

eFPEmust 35.78 43.46 34.98 0.00

eFPEmay 89.34 100.00 88.79 0.00

BCM-DZ-1

(39)

eFPEmust 5.13 7.14 5.37 4.55

eFPEmay 5.13 7.14 7.84 4.55

BCM-DZ-5

(39)

eFPEmust 8.77 26.32 11.14 2.94

eFPEmay 8.77 26.32 11.11 2.94

BCM-AIOB-1

(258)

eFPEmust 51.55 78.18 43.53 0.00

eFPEmay 51.94 78.79 44.08 0.00

BCM-AIOB-5

(258)

eFPEmust 41.87 78.05 28.06 3.33

eFPEmay 43.21 78.54 28.67 6.11

Over all runs of

eFPE settings
49.49 72.87 39.28 2.78

False Positives Elimination (FPE) Settings:The FPE is
carried out in three settings as described below.

a) FPEorig: This is the original setting in which no model
checking call is skipped as an RVC.

b) eFPEmust: This is the setting for efficient elimination of
false positives in which RVCs are identified and skipped
when all variables in an assertion aremust-cnv variables.

c) eFPEmay: In this setting, RVCs are identified and skipped
when all variables in an assertion aremay-cnv variables.

Each of the above three FPE settings is further refined at
two different levels by varying the maximum allowed calling
context length (maxCCL): maxCCL = 1, and maxCCL = 5.
This is because, in our experience, context length of 5 is
generally sufficient when a warning can be resolved as a false
positive and CBMC does not usually scale up beyond these



contexts. Further, in each setting, CBMC was made to time
out after 120 seconds of verification time.

Assumptions:We have made (and ensured), the following
assumptions for each of the above three FPE settings.

• We have restricted RVC identification to assertions that
are reachable, sincecnv variables are computed without
performing reachability analysis. Thus, our analysis may
report RVCs for model checking calls that are guaran-
teed to eliminate false positives corresponding to the
unreachable assertions. This affects the precision of RVCs
identification and loss in false positives eliminated. Hence
in our experiments, to avoid this effect, we have manually
identified reachable assertions and have restricted our
measurements to them.

• The code to be verified issliced separately with respect
to each of the input assertions, so that every code slice
corresponds to a single assertion.

Hardware Configuration:Our experiments are performed
on a machine with Intel Core i7-4600U CPU @ 2.10 GHz
2.70 GHz, 8 GB RAM configuration, and having Windows 7
Enterprise SP1 as the operating system.

TABLE II: Details on identification of RVCs

Verifi-
cation
setting

(warnings
processed)

Counter
example

calls
in

FPEorig

eFPE
settings

Identi-
fied

RVCs

Correctly
identified

RVCs

SCMS-DZ-1
(41)

21

eFPEmust 14 14
*eFPEmust 15 15
eFPEmay 15 15
*eFPEmay 18 18

SCMS-AIOB-1
(137)

111

eFPEmust 63 63
*eFPEmust 67 66
eFPEmay 114 111
*eFPEmay 115 111

BCM-DZ-1
(39)

14

eFPEmust 2 1
*eFPEmust 2 1
eFPEmay 2 1
*eFPEmay 2 1

BCM-AIOB-1
(258)

165

eFPEmust 133 129
*eFPEmust 140 132
eFPEmay 134 130
*eFPEmay 139 132

C. Experimental Results

The experimental results are presented in below described
tables and figures, where a code verification setting is denoted
by application-property-maxCCL (like SCMS-AIOB-1, and
BCM-DZ-5).

a) Table I presents the number of warnings processed, and
percentage of — (i) model checking calls avoided, (ii) re-
duced counterexample calls, (iii) time saved, and (iv) lossin
eliminated false positives — in each of theeFPE settings.
Further, it also presents these percentages computed over
all runs of theeFPEsettings (percentage of the total of the
numbers in next described figures).

b) Figure 7 reports the time taken (in minutes with the fraction
part ignored) by each of the FPE settings. The presented
time is average time, computed from three different runs of
the same FPE setting to minimize the effect of performance
variations of the used machine. In these results, the time
spent in slicing the code with respect to the input assertions
is not included.

c) Figure 8 compares the false positives eliminated in each of
the settings.

d) Figure 9 presents the total model checking calls made in
each of the three FPE settings.

e) Figure 10 shows the number of calls that have resulted in
counterexamples (assertion violations). In these results, the
counterexamples reported due to insufficient loop unwind-
ing [12] are not counted.

f) Table II presents details about the RVCs identified for the
code verification settings with maxCCL=1. These details
are also provided for two variants of theeFPE settings -
*eFPEmust and *eFPEmay- in which the RVCs are identified
when any of the assertion variable is acnv variable. Results
of these settings are discussed in Section IV-D3.

D. Results Discussion (Observations)

Our measurements are summarized in tables I and II. We
observe that:

a) TheeFPEsettings (eFPEmust andeFPEmay), on an average,
reduced the total model checking calls by 49.49%, and
this in turn, reduced the false positives elimination time
by 39.28%.

b) There is a large number (58%) of the model checking calls
in FPEorig that result in the counterexamples. However,
these calls are reduced to 31% of the total model checking
calls in theeFPEsettings (refer to figures 9 and 10). Also,
on an average, the model checking calls that resulted in
counterexamples are reduced by 72.87%.

c) Overall, there are 21 false positives (out of 754) that were
eliminated inFPEorig but not in theeFPE settings. That
is, the above speed up (39.28%) is achieved at the cost
of elimination loss of 2.78%. Our manual analysis of these
21 cases indicated that, their corresponding model checking
calls are identified as redundant (when they were not) due
to the imprecisely computedcnv variables. Had we been
able to compute thecnv variables more precisely, the loss
would have been close to zero.

d) Referring to Table II, on an average, themust-cnv andmay-
cnv variables identify 76% of the total model checking
calls resulting in counterexamples (recall=76%) with a
precision of 97.3%.

e) The time taken to identify the RVCs was negligible as
compared to the time saving achieved.

1) Trade-off: Table I shows that it is always possible to
reduce the total time spent in model checking the assertions
although the quantum of reduction may vary from minutes to
hours. However, this performance improvement comes at the
cost of missing elimination of 21 warnings which need to be
manually inspected. The time spent in this depends on various
factors like type of warnings, code complexity, reviewing skills
of the user, and tool support used. This demonstrates an
interesting tradeoff: on the one hand, we could let the model
checker be more precise and find all false positives; on the
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Fig. 10: Model checking calls resulting in counter-examples

other hand, we could let a few false positives slip through for
efficiency of the process, but then we may need to spend time
in their manual inspection.

2) May-cnv Variables Vsmust-cnv Variables: Tables I and
II indicate that, on SCMC application, themay-cnv variables
identify significantly more number of RVCs as compared to
the must-cnv variables while eliminating the same number
of false positives that are eliminated bymust-cnv variables.
However, for BCM applicationmay-cnv analysis identifies
comparable number of RVCs although it fails to eliminate
some (5) false positives that are eliminated bymust-cnv

variables. This explains the trade-off between speed-up and
precision in false positives elimination when thecnv variables
are computed at the different levels of over-approximation.

3) Constraining All Vs. Some Assertion Variables:Table
II indicates that, requiring a single assertion variable tobe a
cnv variable identifies more RVCs as compared to the RVCs
identified when all variables are required to becnv variables.
All false positives eliminated by (eFPEmust andeFPEmay) are
also eliminated by (*eFPEmust and *eFPEmay), thus making
the requirement of some assertion variable to becnv variables
a practical choice.



E. Generalization of Experimental Results

The experiments are performed using two applications and
two properties to demonstrate the possibility of improving
efficiency considerably with a negligible loss of precisionin
false positives elimination. It would be interesting to perform
a wider range of experiments using a large set of benchmarks
and verification properties to assert the behavior and effective-
ness of the proposed apporach.

Even though the experiments are performed using propri-
etary static analysis tool (TCS ECA), the proposed approach
can be applied on the warnings generated by any off-the-shelf
tool. This is because thecnv variables used to identify a model
checking call as a redundant are independant of the static
analysis tool used. However, the gain in performance may vary
depending on the static analysis tool and model checker in the
combination because static analysis tools are known to have
different false positive rate, and model checkers vary in their
performance and scalability.

In the proposed approach, a warning is eliminated only
when it is guaranteed to be a false positive. All the remaining
warnings must be manually analyzed to ensure correctness at
the warning points. Thus, the overall approach is sound and
applicable to both crictical and non-critical systems alike.

V. RELATED WORK

Broadly, static analysis and model checking have been
combined in two ways to improve the precision of static
analysis. In the first category, the information is iteratively
exchanged between the two techniques [3], [8], [9]. For
example, Brat et al. [3] and Junker et al. [9] have combined
these two in such a way static analysis component iteratively
exchanges information with the model checker. In the second
category, static analysis and model checking are cascaded by
using one after the other in a fixed order [6], [12], [14], [15],
[17], [19]. In this approach, static analysis is used first and
later model checking is used to eliminate false positives from
the generated analysis warnings.

The cascading approach is more relevant for the com-
parison with our approach because it generates an assertion
corresponding each warning reported by static analysis to be
checked later by model checking. Wang et al. [19] have used
such a combination to automatically detect code vulnerabili-
ties. Further, R̈odiger [15] has combined data flow analysis and
model checking to improve the security vulnerability detection.

Post et al. [14] have adapted the approach to expand the
calling context incrementally in order to deal with the scala-
bility. In these combinations, calls to the model checkers are
made without checking if they are redundant and the efficiency
aspect is ignored. In our previous work [12], for the efficient
elimination of false positives, we partitioned the generated
assertions and verified only one representative assertion from
each partition. However, it still requires making numerous
calls to the model checker while verifying the representative
assertion by incrementally expanding the calling context.To
the best of our knowledge, only slicing [6], [19] and assertions
partitioning [12] have been used for the efficiency purpose.

While we also follow a similar approach as used in the
above combinations, we avoid making a model checking call

directly by identifying if the corresponding verification can
possibly result in futile counterexample. This technique,being
orthogonal, can be combined with [6], [12], [14] to improve
their performance.

VI. CONCLUSION AND FUTURE WORK

Model checking of an assertion whose variables can take
any arbitrary value is most likely to generate a counterexample.
False positive elimination using the approach of context expan-
sion inherently requires the input variables of a procedureto
take arbitrary value, ironically generating spurious counterex-
amples in many cases. We have used these observations to re-
duce the number of the spurious counterexamples by proposing
the concept of complete-range non-deterministic values (cnv )
variables. Thecnv variables are used to identify and avoid
redundant verification calls, and thus improve performance
during the model checking-based elimination of false positives.

In our experiments, we observed a large number of model
checking calls resulting in counterexamples (around 58% of
the total model checking calls). It is because often variables
get their values from outside the calling context. We could
avoid, on an average, 76% of these calls (recall) using the
cnv variables and that with a precision of 97.3%. When the
cnv variables are computed more precisely (must Vs may),
the precision in identifying such calls increases but the recall
decreases, indicating an interesting trade-off between the false
positives eliminated and efficiency achieved. Our experiments
demonstrate that this trade-off can be useful in practice to
improve efficiency of false positives elimination considerably
with a negligible loss in precision. Further, this trade-off can
be possibly exploited at different levels by computing thecnv
variables of varying precision. That is,may-cnv variables can
be used when faster elimination of false positives is required
while must-cnv variables are suited when higher precision is
demanded.

Our empirical measurements show a significant gain
(39.28%) in performance by avoiding 49.49% of the total
model checking calls. This gain is achieved because the
redundancy is computed in bulk using a light-weight static
analysis whereas a model checker consumes a lot of time
while verifying these redundant calls individually. However,
the gain comes at the cost of missing elimination of some
(2.78%) false positives. This is due to the inability to compute
thecnv variables precisely, and is a downside of our appproach
because each of the missed false positives needs to be manually
inspected.

In near future, we plan to understand how the proposed
approach behaves with a larger set of applications and verifi-
cation properties by performing a wider range of experiments.
Further, we aim to observe the effect of the precision of the
commerical off-the shelf static analysis tools on the trade-off
in false positives elimination.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their thoughtful
and detailed comments on the paper. We also thank Gabriella
Carrozza for her help in shepherding the paper.



REFERENCES

[1] TCS Embedded Code Analyzer (TCS ECA).
http://www.tcs.com/offerings/engineeringservices/Pages/TCS-
Embedded-Code-Analyzer.aspx.

[2] C. Baier and J. Katoen.Principles of model checking. MIT Press, 2008.

[3] G. Brat and W. Visser. Combining static analysis and model checking
for software analysis. InProceedings of the 16th IEEE international
conference on Automated software engineering, ASE ’01, pages 262–,
Washington, DC, USA, 2001. IEEE Computer Society.

[4] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In K. Jensen and A. Podelski, editors,Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2004), volume
2988 ofLecture Notes in Computer Science, pages 168–176. Springer,
2004.

[5] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled.Model Checking.
MIT Press, Cambridge, MA, USA, 1999.

[6] P. Darke, M. Khanzode, A. Nair, U. Shrotri, and R. Venkatesh. Precise
analysis of large industry code. InSoftware Engineering Conference
(APSEC), 2012 19th Asia-Pacific, volume 1, pages 306–309, 2012.

[7] D. Engler. Concur 2005 - concurrency theory. chapter Static analysis
versus model checking for bug finding, pages 1–1. Springer-Verlag,
London, UK, UK, 2005.

[8] A. Fehnker and R. Huuck. Model checking driven static analysis for the
real world: designing and tuning large scale bug detection.volume 9,
pages 45–56. Springer-Verlag New York, Inc., Secaucus, NJ,USA,
2013.

[9] M. Junker, R. Huuck, A. Fehnker, and A. Knapp. Smt-based false
positive elimination in static program analysis. InICFEM, pages 316–
331, 2012.

[10] U. Khedker, A. Sanyal, and B. Karkare.Data Flow Analysis: Theory
and Practice. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2009.

[11] A. D. Lucia. Program slicing: Methods and applications. In SCAM,
pages 144–151, 2001.

[12] T. Muske, A. Datar, M. Khanzode, and K. Madhukar. Efficient
elimination of false positives using bounded model checking.In VALID
2013, The Fifth International Conference on Advances in System Testing
and Validation Lifecycle, pages 13–20, 2013.

[13] F. Nielson, H. R. Nielson, and C. Hankin.Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[14] H. Post, C. Sinz, A. Kaiser, and T. Gorges. Reducing false positives
by combining abstract interpretation and bounded model checking. In
ASE, pages 188–197, 2008.

[15] W. Rödiger.Merging Static Analysis and Model Checking for Improved
Security Vulnerability Detection. Masters, 2011.

[16] A. Tsitovich. Detection of security vulnerabilities using guided model
checking. In M. Garcia de la Banda and E. Pontelli, editors,Logic
Programming, volume 5366 ofLecture Notes in Computer Science,
pages 822–823. Springer Berlin Heidelberg, 2008.

[17] M. Valdiviezo, C. Cifuentes, and P. Krishnan. A method for scalable
and precise bug finding using program analysis and model checking.
In J. Garrigue, editor,Programming Languages and Systems, volume
8858 of Lecture Notes in Computer Science, pages 196–215. Springer
International Publishing, 2014.

[18] K. Vorobyov and P. Krishnan. Comparing model checking andstatic
program analysis: A case study in error detection approaches. In
International Workshop on Systems Software Verification (SSV’10),
2010.

[19] L. Wang, Q. Zhang, and P. Zhao. Automated detection of code
vulnerabilities based on program analysis and model checking. In
SCAM, pages 165–173, 2008.

APPENDIX

FPE using Context Expansion Approach

The call to process an assertionAn belonging to procedure
f , during false positives elimination using calling contextex-
pansion, is invoked asprocessAssertion(An, f ,0). The warning
corresponding to the assertionAn is eliminated only when this
invocation returnsverificationSuccess. The maximum allowed
calling context length during context expansion is indicated by
maxCCL.

Algorithm 1 False Positives Elimination using Calling Context
Expansion

procedure PROCESSASSERTION(An, currFunc, level)
result :=verifyAssertion(An, currFunc);
if result 6= “counterExample”then

return result;
level = level + 1;
if level = maxCCL then

return “Level Limit Reached”;
if currFunc is an application-entry functionthen

return result;
f uncCallers= get callers of functioncurrFunc;
for caller∈ f uncCallersdo

result = runFPE(An,caller, level);
if result 6= “verificationSuccess”then

return result;
return “verificationSuccess”;

procedure VERIFYASSERTION(An, currFunc)
Verify An in the context ofcurrFunc.
if counter example is generatedthen

return “counterExample”;
if An is verified successfullythen

return “verificationSuccess”;
if no decision is made in given time limitthen

return “timeOut”;
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