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Abstract—Static analysis tools are widely used in practice to
improve the quality and reliability of software through early
detection of defects. However, the number of alarms generated
is a major concern because of the cost incurred in their manual
inspection required to partition them into true errors and false
positives. In this paper, we propose a static analysis to identify
the causes of alarms generated by a client static analysis. This
simplifies the manual inspections and reduces the cost involved.
The proposed analysis involves the following: (1) modeling the
basic reasons for alarms as alarm cause points of several types,
(2) ranking these cause points based on three different metrics,
(3) a workflow in which a user answers queries about the cause
points and the answers are used in subsequent round of the
client analysis. The collaboration between the user and the client
analysis helps the tool to resolve the unknowns encountered
during the analysis and weeding out the alarms. It also helps
the user expedite the manual inspections of alarms. Further,
the ranking of cause points helps to prioritize the alarms. Our
experimental evaluation in several settings demonstrated that the
proposed approach (a) reduces manual effort by 23% to 72%
depending on various parameters, with an average reduction of
42%, and (b) is also effective in identifying the alarms that are
more likely to be true errors.

I. INTRODUCTION

Static analysis tools have proved their effectiveness in
improving the quality and reliability of software through
early detection of defects [1]. However, given that verification
problems are undecidable in general, reporting of alarms by
these tools is inevitable [2]–[4]. Further, the tools compromise
on precision to achieve analysis scalability, soundness, or
improved performance [5]–[7]. As a consequence, the number
of alarms reported is large and a significant amount of effort is
spent in their manual inspection required to classify them into
true errors and false alarms [3], [7]–[9]. In spite of the cost, the
manual inspections are essential to fulfill the practical needs
of constructing trusted (safety critical) software [10], [11].

Several studies [12]–[14] report that the manual effort spent
in inspecting the alarms is the foremost reason for underuse of
(sound) static analysis tools. The effort in manual inspection
can be reduced either by increasing the analysis precision or by
simplifying the inspection of alarms. The former has received
significant attention but is limited by the inherent limitations
of static analysis, while the latter has gained attention recently
[2]–[4], [15]–[19]. Any approach that addresses the latter
ought to be human-centric and must deal with the methodology
and tool support being used during the inspections [12], [13].

In this paper, we propose a static analysis for discovering the
causes of alarms generated by a client static analysis (eg. an
analysis to discover possible array out of bound accesses). Our
primary goal is to simplify the manual inspections of alarms
and reduce the human effort involved. A secondary goal is
to inspect (resp. uncover) as many alarms (resp. true errors)
as possible in a given inspection time. The following aspects
make the proposed analysis novel.

1) The statements in which the unknown values relevant
to the analysis originate, are modeled as alarm cause
points by performing a cause points analysis. Instead
of reporting alarms generated by a client analysis, we
report the cause points of the alarms. This shifts the focus
of manual inspections from alarms to their cause points
thereby simplifying the process considerably.

2) The alarm cause points are categorized into different
types and are ranked using a pragmatic approach based
on three metrics: cause point type, contribution score, and
their similarity or spatial proximity. The ranking enables
inspecting (resp. uncovering) as many as alarms (resp.
true errors) possible in a given inspection time.

3) Alarm cause points-specific queries are formed seeking
abstract information that relates to the safety at the alarm
points (similar to [2], [16]). Answering such queries is
much easier and faster than inspecting the alarms.

4) An iterative workflow is used in which the client analysis
and seeking user inputs at the alarm cause points are
interleaved. The user inputs are received as answers to
the queries formed for cause points of alarms generated
by the client analysis. Subsequent client analysis is guided
by the user inputs. The process is repeated until no more
alarms are generated by the client analysis. This approach
enables a much quicker convergence on alarms handling.

Our experimental evaluation in several settings demon-
strated that the proposed approach reduces the manual effort
by 23% to 72% depending on various parameters in the static
analysis and manual inspections. On an average, the reduction
was by about 42%. Further, the experiments demonstrated that
the approach is also effective in identifying alarms that are
more likely to be true errors.

The key contributions of this paper are: (1) Cause points
analysis for systematic modeling of cause points of alarms
and shifting the focus in manual inspections from the alarms



1 const int arr1[]={0,3,7,9,14,22,34};
2 char arr2[35], str[20], bound, tmp;
3

4 void foo(){
5 unsigned int i, j, k, length;
6 ... // some code
7 scanf("%s",str); //Cause point CP7
8 if(i < 7 && j < i)
9 bound=arr1[i]-arr1[j];//Cause point CP9

10

11 for(k = 0; k <= bound; k++){ //OFUF
12 f1(k);
13 }
14 length = strlen(str);
15 f2(bound, length);
16 }
17

18 void f1(int p){
19 if(nondet()) arr2[p] = 0; //AIOB
20 else arr2[p] = 1; //AIOB
21 }
22

23 void f2(int p, unsigned int q){
24 arr2[p - 1] = 100 / q; //AIOB, ZD
25 tmp = str[q]; //AIOB
26 }

Fig. 1. Examples of static analysis alarms along with their cause points

to their cause points. (2) A pragmatic ranking scheme using a
mix of three metrics to prioritize the cause points. (3) A novel
approach of presenting the results of a client analysis to the
user by interleaved rounds of the client analysis and seeking
user inputs at cause points. (4) Study of alarm cause points
and evaluation of our approach in practice.

Our analysis technique is applicable to both sound and
unsound static analysis tools alike. However, we limit the
scope of the client analyses considered in the paper to sound
static analysis tools that perform analysis based on the data-
flow information and to the domains where resolving of all
the reported alarms is warranted (like safety critical systems).
The checking of user provided assertions, and alarms reported
based on structural information or local bug patterns (like
FindBugs [20]) are excluded from the scope of client analyses.
Paper outline. Section II provides a motivating example.
Section III presents the modeling of alarm cause points and
their ranking is presented in Section IV. Section V describes
framing of the cause points-specific queries and a framework
for the effective user interactions with an analysis tool. Section
VI presents our experimental evaluation. Related work is
presented in Section VII. Section VIII concludes the paper.

II. MOTIVATING EXAMPLE

Consider the example in Figure 1 adapted from a real-life
embedded system; simplified considerably for exposition, yet
sufficiently rich to present our ideas. A sound static analyzer
(like TCS ECA [21]) generates six alarms1 for this example:

1The alarms generated on the example may vary depending on the analysis
domain and reporting methodologies [22].

four instances of array index out of bound (AIOB), and one
instance of each division by zero (ZD) and overflow underflow
(OFUF). The analyzer reports these alarms because it is unable
to discover the precise values of variables str at line 7 (due
to the user provided inputs) and bound at line 9 (due to
the arr[i]−arr[ j] computation). We denote these two sources
leading to the analysis imprecision as alarm cause points2, CP7
and CP9, respectively. Henceforth in the paper, we use An, On,
and Zn, respectively, to denote AIOB, OFUF, and ZD alarm
at line n.
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Fig. 2. Abstract representation of effort to inspect the alarms in Figure 1

1) The Original Approach to Handling Alarms: The effort
spent during a manual inspection of alarms individually varies
depending on the code complexity, tools support used, review-
ing skills of the user, type of alarms, reporting of alarms, and
so on [3]. Thus, we represent manual effort needed to inspect
the example alarms using abstractions as shown in Figure 2,
where the effort is shown in terms of two components3. For an
alarm point α, the first component denoted as εα, represents
the effort required to traverse the code from α to its cause
point cp. The second component, denoted Ecp, represents the
effort in manual inspection to identify the values of the relevant
variable(s) at the cause point cp.

Note that the effort shown in Figure 2 may also vary
depending on the reuse of knowledge gained during the inspec-
tion process. For example, assuming A19 is inspected earlier,
inspecting A20 (i.e. effort εA20) may correspond to checking if
the values of p are same at A20 and A19, eliminating the need
of traversal from A20 to CP9. Such a reuse is not depicted
in Figure 2 for simplicity of modeling. However, we assume
there is complete reuse of knowledge in the second component.
That is, the identified values of respective variables at the cause
points are remembered (say, from the initial inspections of O11
and Z24) and the values are reused in subsequent inspections
of the other alarms. With these assumptions, the total effort
required to inspect all the example alarms individually is:

εorig = ((εO11 +Ecp9)+εA19 +εA20 +εA24)

+((εZ24 +Ecp7)+εA25)

2Throughout this paper, alarm cause points mean the program points that
cause imprecision in the analysis and not a root cause for an error.

3These components would still be required if alarms are inspected using
the sophisticated user interfaces available in the existing analysis tools.



2) The Proposed Approach of Handling Alarms: Our ap-
proach reports the two causes (CP7 and CP9) and seeks the
values of variables str and bound at these points from the user
in order to resolve the alarms. The manual effort spent by the
user in identifying these values, say εnew, is Ecp7 + Ecp9. A
re-analysis of the code using the user-provided input values
reports the alarm points either as safe or unsafe depending on
the values, leading to generation of no alarm4. Thus, the effort
saved by our proposed approach is

εsaved = εorig −εnew (1)

= (εO11 +εA19 +εA20 +εA24)+(εZ24 +εA25)

Observe that the effort saved (εsaved) is not because of an
improvement in the precision of the client static analysis, but
it is due to the elimination of multiple alarms in one go and
elimination of redundant code traversals performed manually
from the alarm points to their corresponding cause points.
Given the sizes and complexity of the industrial applications,
we expect this saving to be considerable.

In Equation 1, εsaved can be maximized by minimizing εnew.
We achieve this by presenting a cause point-specific query
seeking abstract information necessary for the safety of alarms
(similar to [2], [16]). For example:

1) For CP9, instead of asking “What are the values computed
by ‘arr[i]− arr[ j]’ at line 9?”, it is more relevant and
intuitive to ask “Does the computed value(s) at line 9 by
‘arr[i]− arr[ j]’ lie in the range of ⟨1,34⟩?”. The lower
(resp. upper) bound is inferred considering the safety of
A24 (resp. A19).

2) For CP7 we ask “Is the input string ‘str’ always non-
empty and contains less than 20 characters?”. Here, the
requirement of non-empty is for the safety of Z24 and the
requirement on size (< 20) is for the safety of A25.

The framing of the above queries is described in detail in
Section V-A.

In our approach, the cause points are modeled as close
as possible to the basic reason generating the alarms. For
example, we could have safely modeled CP14 (line 14) as the
cause point for Z24 and A25. However, intuitively, answering
a question corresponding to CP14 would incur more effort as
compared to answering the question associated with CP7

5. This
suggests the need of a systematic modeling of cause points. It
is described in the next section.

III. CAUSE POINTS ANALYSIS

This section describes modeling of alarm cause points and
an analysis to discover them. We begin by describing various
types of unknowns observed during the analysis.

A. Modeling of Unknowns

Achieving satisfactory precision in static analysis is dif-
ficult primarily because the values of certain variables are

4In our approach, the error(s) marked by the client analysis are reported
separately and the user handles them differently.

5It is with the assumption that the analysis tool is precise in handling strings.

simply unknown statically. Such values have to be treated
as nondeterministic choices by a sound analysis tool during
the analysis leading to a plethora of alarms [2], [5]–[7]. In
their work [2], Dillig et al. have broadly classified these
unknown variables into two types: input variables denoting
unknown values of program inputs, and abstraction variables
representing unknowns arising due to approximating program
behavior. We refine the classification of unknowns depending
on the basic operations (origins) leading to them, and it is
informally described below restricting the discussion to C
language.
i-unknowns: These unknowns arise due to unknown values of

program inputs: the values received as inputs from user,
read from network or file or sensors, linked at load-time,
etc. In Figure 1, str in scanf () at line 7 is an i-unknown.

c-unknowns: These are computational unknowns resulting
from approximation of complex computations in the
program. For example, a non-linear arithmetic such as
ratio∗a∗b+size is a c-unknown. Further, any computa-
tion involving two or more unknowns or an unknown
due to involvement of a pointer is also modeled as
c-unknown.

loop-unknowns: We observe that many unknowns (and thus
the alarms) in practice are generated due to loops
whose bounds (loop execution count) cannot be deter-
mined statically. We model this source for unknowns as
loop-unknowns (described in Section III-B1). For exam-
ple, the loop at line 10 in Figure 3 is a loop-unknown.

ds-unknowns: These unknowns result due to abstracting the
values of unbounded data structures like list, stack, queue
or even the arrays [5], [23], [24].

lib-unknowns: This category corresponds to the unknowns
resulting from calls to library or external functions whose
body is not available for analysis. For example, the call
lib(t) at line 6 in Figure 3 is a lib-unknown assuming the
body of lib function is not available during the analysis.

p-unknowns: These correspond to not knowing (in)feasibility
of certain execution path(s) carrying known but unsafe
value to the alarm program point. This is described in
Section III-B2.

Note that the origins of unknowns, and hence the above
categorization of unknowns, can vary depending on the pro-
gramming language and also the granularity of modeling.
We have modeled them into 6 types for the discussion and
experiments. We believe this categorization will apply to other
programming languages as well (like C++ and Java) with
addition of a few more categories.

B. Modeling of Cause points

We associate an origin o of unknown values with its
program point p that causes a variable u to be an unknown and
augment the association with its unknown type t. We denote
the association by ot

p and refer to it as a cause point of u.
The origin o is either an expression or a loop statement, and
the unknown type t ∈ T = {i,c, loop,ds, lib, p} corresponds
to i-unknown, c-unknown, loop-unknown, ds-unknown,



1 void foo()
2 {
3 int i, a, b, x, y, z, t, tmp, arr[20];
4 ... // some code
5 x = arr[a]; // assume 0 ≤ a < 20
6 y = lib(t);
7 tmp = 1/x; // {x,Z7}→ {arr[a]ds

5 }
8

9 i = 0; t = 5;
10 while(i < 10;)

11 a = arr[t]; // t →{whileloop
10 }

12 t=t+1;

13 y=y+1;// {y,O13}→ {lib(t)lib
6 , whileloop

10 }
14 if(random()%2) i=i+1;
15 }

16 arr[y]=0;// {y,A17}→ {lib(t)lib
6 , whileloop

10 }
17

18 z = arr[b]; // assume 0 ≤ b < 20

19 t = 1/(z+1); // {z,O19,Z19}→ {arr[b]ds
17}

20 }

Fig. 3. Examples of unknowns with their cause points

lib-unknown, and p-unknown respectively. For brevity, we
denote the causal relationship as u→{ot

p}, where the operator
→ reads “is caused by”. We use a set on the RHS of →
because an unknown can be caused by more than one cause
point.

Further, a cause point of an unknown u at a program point p
is also a cause point for another unknown v at a program point
q if v receives its values from u through some path from p to q.
Thus, only the basic operations leading to unknowns directly
or transitively are modeled as cause points. The cause points
of unknowns in an alarm expression are referred to as cause
points of the alarm. We use the same notation → to indicate
the alarms to their cause points relationship. The comments
in Figure 3 show examples of alarms and their cause points,
where the effect of cause points (the unknowns and alarms
caused) are shown on the LHS of →. The program points in
the alarm cause points are denoted using line numbers.

1) Handling of loop-Unknowns: In this section, we discuss
the handling of loop-unknowns in more details. Consider a
loop while(p){s} whose loop execution count is determined
by some unknowns UL being used in p. Let VL be the set of
variables from s whose value(s) are dependent on iteration of
the loop. There are two possibilities:
Possibility 1. The loop execution count can be expressed in
terms of the unknowns in UL. In this case, the cause points
of the unknowns in UL are regarded as the cause points for
an unknown in VL. For example, in Figure 1, the execution
count of the f or loop at line 11 is expressible as the value of
another unknown bound. Here, UL = {bound}, and VL={k}.
Thus, k →{(arr[i]−arr[ j])c

9}.
Possibility 2. The loop execution count cannot be expressed
in terms of values of the unknowns in UL. In this case, a new
cause point of loop-unknown type is created for an unknown
in VL. For example, the execution count of the while loop at

1 void foo(int a){
2 int x=0, y;
3 scanf("%d",&y);
4 if(a == 1){
5 x = 10;
6 y = 1;
7 }

8 if(a == 1){
9 t=1/x;//Z9 →{x=0p

2}
10 }
11

12 if(x == 10)
13 t=1/y;//Z13 →{scanf(y)i

3}
14 }

Fig. 4. Alarms due to path infeasibility

line 10 in Figure 3 can not be known or expressed as values
of some other unknown although the loop appears bounded,
because the loop variable i is incremented nondeterministically
at line 14. For this case, the causality at line 10 is shown as
(VL = {i,y, t})→{whileloop

10 }.
2) Path Infeasibility-related Cause Points: Cause point

modeling described in Section III-B is not sufficient for alarms
that are generated due to approximations of execution paths by
the control flow paths. A simplified example of such an alarm
(Z9) is shown in Figure 4. The alarm results due to inability
of the analysis to determine the infeasibility of the path in
which 0 (known but unsafe value assigned at line 2) reaches
the alarm point. Such cause points are categorized to have
p-unknown as its type. A cause point of this type is denoted as
ep

n , which corresponds to not knowing infeasibility of reaching
some known but unsafe value assigned in expression e at point
n to the alarm program point.

C. Computation of Cause Points

We compute the alarm cause points using data flow analysis
[25], [26] formally presented in the Appendix A. We have
presented the analysis at an intraprocedural setting which can
be easily lifted to interprocedural setting. For an alarm α, let e
be the alarm expression with vars(e) being the variables used
in it. The cause points of the alarm α at program point p,
say Cα, are identified as below, where Inp represents results
computed by the analysis at the start of program point p.

Cα =
∪

v ∈ vars(e)

Inp(v) (2)

When Cα is empty, the alarm has a cause point of
p-unknown type. Also, an alarm can have a cause point of
p-unknown type along with the other types of cause point(s).
Reaching definitions [25], [26] can be used to locate cause
points of p-unknown type, i.e. the program points assigning
unsafe value(s).

IV. RANKING OF CAUSE POINTS

To improve the effectiveness of manual inspections of
alarms further, we prioritize the cause points using three
metrics as described below.

A. Unknown Type-based Ranking

The cause points are ranked based on their unknown type
in the order of i > lib > p > loop > c > ds, where the LHS of
> operator has higher priority over the RHS. This ranking is



based on our hypothesis that (a) alarms caused by i-unknowns
and lib-unknowns are more likely to be true errors, and
(b) alarms caused by c-unknowns and ds-unknowns are
more likely to be false alarms. The following intuitions serve
as the basis for the hypothesis.

1) The cause points with i-unknown type are the sources
for free variables in a program that operates in a partially
defined environment, and failure to validate them mostly
leads to an error due to certain assumptions made on
the input values by the programmer [27]. The validated
inputs are no longer unknowns due to the restrictions put
during their validations.

2) The implementation of library functions generally ad-
heres to the specification known to the programmer.
However, many times programmers miss to validate the
values returned by the library function calls.

3) The cause points with p-unknown denotes presence of
unsafe value, and hence the infeasibility of the value
reaching the alarm program point must be ensured. Given
the large volume and high complexity of the code in
practice, the existence of a path carrying the unsafe value
to the alarm program point is not unlikely.

4) Modeling every complex computation and a read of an
unbounded data structure as an unknown itself reduces
its probability to cause an alarm as an error.

B. Grouping of Cause Points

The cause points having similar unknown type are grouped
depending on their lexical similarity or proximity. When a
cause point cannot be grouped with any other cause point, it
is treated as the only member of its own group.

1) Lexical Similarity-based Grouping: In this approach,
lexically similar cause points are grouped together so that their
corresponding questions are answered in one go. For example,
all the cause points arising due to calls to the same library
function (say readSensor()) are grouped together presenting
an opportunity to frame a query at the group level. Also, in
Figure 3, the cause points arr[a]ds

5 and arr[b]ds
18 are grouped

as they relate to the same array.
The similarity identification may vary based on the type of

unknown. For example, the identifiers representing data struc-
tures (resp. library functions) in cause points of ds-unknown
(resp. lib-unknown) type are compared respectively. The en-
tire cause point expression is matched for c-unknown and
p-unknown type cause points. Cause points of i-unknown
and loop-unknown types are excluded from such grouping.

2) Proximity-based Grouping: In this approach, the cause
points belonging to the same procedure or file are grouped
so that their corresponding questions are answered together.
This reduces switching between multiple source files and
procedures while answering a set of questions.

C. Contribution Score-based Ranking

Let Cα be the set of cause points for an alarm α. When
|Cα| = 1, c ∈Cα is said to cause α fully. Otherwise c ∈Cα is
said to cause α partially. Let Sc be the set of alarms that are

caused due to a cause point c. To measure the contribution of
c in causing Sc, we define two scores:

full contribution score, fc-score(c) = ∑
α∈Sc, |Cα|=1

1

partial contribution score, pc-score(c) = ∑
α∈Sc, |Cα|>1

1
|Cα|

The total contribution score (tc-score) of a cause point c
in alarms generation is computed as given below, where a
configurable factor k ≥ 2 is used to weigh the fc-score higher
than the pc-score.

tc-score(c) = fc-score(c)∗ k +pc-score(c) (3)

The tc-score is used to rank the cause points within a group
formed (Section IV-B) where, intuitively, cause points with
higher score are prioritized over the ones having lesser score.
Further, composite tc-score is computed for a group as the
sum of tc-scores of its grouped cause points, and this is used
to rank the groups belonging to an unknown-type category.

Some examples6 of cause points prioritized according to the
proposed ranking scheme are given below. The examples also
show contribution scores (tc-scores) computed with k = 2 for
each of the cause points and their groups if any.

Figure 1: scan f (str)i
7=4 > (arr[i]−arr[ j])c

9=8
Figure 3:

lib(t)lib
6 =3 > whileloop

10 =3 > (arr[b]ds
18=4 > arr[a]ds

5 =2)=6
Shifting the focus in manual inspections from alarms to their

cause points not only reduces the inspection effort (Section
II) but also improves effectiveness of the manual inspections
when the resources are limited. For example, alarms that
are more likely to be true errors can be identified using
cause points types and inspected first (our hypothesis or
customizations to it). Further, contribution score can be used as
the primary ranking criterion when inspection of more number
of alarms is demanded in a given time.

V. INTERACTIVE STATIC ANALYSIS

This section describes the framing of meaningful cause
points-specific queries which is followed by a description of
a framework for effective and efficient user interactions with
an analysis tool.

A. Framing Cause Points-specific Queries

Our proposed analysis aims to resolve alarms by accepting
inputs from the user for each of the cause points generating the
alarms. Thus, a set of cause point-specific queries is presented
to the user. To make the user interactions more effective, a
query ought to be relevant, more informative, and easy to
answer in the context of inspection of alarms. To frame such
a query specific to an alarm cause point, we use approach
similar to necessary preconditions [16] and proof obligation
queries [2].

6> operator denotes higher priority of the left operand over the right
operand, while = operator shows contribution score of the left operand.



We frame the queries by identifying required values for
unknowns at the cause point required for the safety of the
corresponding alarms. That is, the expected values represent
necessary precondition on the unknown such that the values
never result the alarms into to an error. We perform an
analysis to frame the queries by (1) inferring values of the
unknown depending on the expression in the alarm and the
verification property, and (2) propagating the inferred values
of the unknown from the alarm point to the cause point
through backward substitution of the values for transitively
dependent variables. For example, for scanf(str)i

7 in Figure 1,
an important requirement is length(str)! = 0 considering the
safety of alarm Z26. We omit the formalization of this analysis
for want of space.

When multiple alarms are caused due to a cause point, the
requirement (necessary precondition) on the cause point is
computed as the combined requirement necessary for safety
of all corresponding alarms. For example, the combined
requirement on CP9 in Figure 1, i.e. the result computed
by arr[i]− arr[ j]c9 is 1 ≤ result ≤ 34. It is identified by
combining the three requirements 1 ≤ result ≤ 34 computed
from A26, 0 ≤ result ≤ 34 computed from A19 and A20, and
0 ≤ result ≤ MAX INT − 1 computed from O11. Framing
queries considering each of the caused alarms separately, as
it is done in [2], would generate and present 3 queries for the
same cause point CP9, thus increasing the number of queries
and user interaction time. Our approach reduces the number
of queries presented and this separates our approach from the
framing of queries in [2].

The effect of answers to the queries is described below.
The answer to a query is ‘YES’: The next iteration of the
client static analysis discharges the corresponding alarms if
the necessary condition in the query is also sufficient condition
for the safety of the alarms. For example, answering ‘YES’ to
both the queries in Section II (about the cause points in Figure
1) discharges their corresponding alarms in the next iteration
of the client analysis. In the other case, where condition in
the query is not sufficient to discharge the alarm(s), the input
values from this query strengthens the requirements on other
cause points that also lead to these alarms.
The answer to a query is ‘NO’: In the next iteration of the
client analysis, either the corresponding alarm(s) are marked as
true errors or the cause point in the query gets translated into
the cause point of p-unknown type. For example, answering
‘NO’ to both the queries associated with the cause points in
Figure 1 results its correspondingly caused alarms into errors
in the the subsequent client analysis. Further, in Figure 4,
answering ‘NO’ to the query asking ‘is user input y non-
zero’ associated with the cause point scanf(y)i

3 (inferred from
the alarm Z13) assigns 0 to y at line 3 in the next analysis
iteration. Due to this assignment, the cause point scanf(y)i

3
gets converted to y=0p

3 cause point whose corresponding query
asks the user the infeasibility of a path carrying this 0 value
to the alarm point at line 13. This also indicates resolving
an alarm with the proposed approach may involve multiple
interleavings of the client analysis and providing user-inputs.

Since the queries are formed based on the expected values,
they encourage the user to think of expected behavior of the
program thereby improving the understanding of the program
state in terms of data invariants at the cause points. This
style of questioning allows our approach to relate directly to
the analysis generating the alarms and hence makes it more
effective.

B. Interactive Analysis Framework
The alarm cause points are reported using an integrated

review framework which is an extended development frame-
work (like Eclipse, NetBeans, and Microsoft Visual Studio) to
support code navigation and to interpret the results of the static
analysis tool used. The environment extension is to integrate
the inspection of alarms seamlessly into their development
process, which currently many of the static analysis tools
lack today [12]. The path(s) associated with a cause point
of p-unknown type are shown using path projection [15] and
its infeasibility is asked to the user.
Traceability. The framework provides traceability (i) from a
cause point to the alarms caused by it, and (ii) from an alarm
to its cause points. This helps a user to locate alarms generated
by a cause point in a query being answered when the answer
to the query is ‘NO’.
Customization of the ranking-scheme. The ranking scheme is
allowed to be customized to suit to the requirements of the
user, because customizability is an important aspect of a static
analysis tool [12], [14]. For example, in certain cases, a user
may use the contribution score as the primary ranking criterion
or even may change the priorities given to the unknown types.
Incremental Analysis. The subsequent iteration of the client
analysis (using the user inputs) is performed as an incremental
analysis [28] to reduce the wait time between the two consec-
utive user interactions.

VI. EVALUATION

To determine the practicality and effectiveness of our tech-
nique in handling the alarms, we performed an empirical
evaluation on a set of real-world applications and our own
benchmark. Our evaluation targeted the following research
questions:
RQ1: What is the reduction in the manual effort using the

proposed approach?
RQ2: What is the contribution of cause points in generating

the alarms and how are they distributed in practice?
RQ3: How effective are the metrics used in the ranking of

cause points?

A. Implementation
We selected TCS ECA [21] static analysis tool that analyzes

C code for a wide range of verification properties, and used its
analysis framework to implement our technique: cause points
analysis, framing of queries, and a prototype of the framework
described in Section V-B. TCS ECA performs flow-sensitive
and context-insensitive interval analysis to compute ranges of
the values of program variables. It uses array smashing [10]
to scale analysis on real-world applications of large sizes.



B. Answering RQ1 (Effort Reduction)

RQ1 evaluates the suitability and effectiveness of our ap-
proach in reducing the alarms inspection cost. To answer
the RQ1, we performed experiments in industry setting. The
experimental setup and results are described below.

1) Selection of Reviewers: We selected a mix of 7 reviewers
who were users of a static analysis tool with at least one
year of experience. Table I presents their total experience
with usage of static analysis and their expertise in manual
inspection of alarms.

TABLE I
REVIEWER DETAILS

Reviewers
R1 R2 R3 R4 R5 R6 R7 R8

Experience (Yrs) 9 9 9 7 5 3 1 1
Expertise H H H M M M L L

H = High M = Medium L = Low

2) Subject Applications: Table II describes the real-world
applications selected in our experiments. They vary in their
size, domain, coding language, system completeness, etc.

TABLE II
APPLICATION DETAILS

Appli-
cation

Size
(KLOC)

Lang-
uage

System Details

A1 45 C An automobile embedded system
A2 30 C A mix of embedded systems
A3 190 C A module of an infotainment system

A4 200 C
A module of open source
Concurrent Versions System (CVS)

A5 5 C++ A Module of an embedded system
A6 595 Java A program analysis workbench

3) Static Analysis Tools and Alarms: Following sound
static analysis tools were selected.

1) TCS ECA: a static analysis tool for C code.
2) Polyspace Code Prover [29], version 9.4 (R2015b): a

commercial static analysis tool widely used for analysis
of C/C++ code.

3) NPEDetector [30]: an open source static analysis tool
for detecting null pointer dereferences (NDP) in Java
programs.

We selected alarms generated by the above tools corre-
sponding to four most commonly checked verification prop-
erties: array index out of bound (AIOB), overflow-underflow
(OFUF), division by zero (ZD), and illegal/null dereference
of a pointer (IDP/NDP). These were selected because veri-
fying the alarms for these properties requires computation of
information governed by data and control flow in the pro-
gram. Table III shows the alarms selected in our experiments
(Column Verification property). Since the manual inspection
of alarms is effort-intensive, we avoided selecting alarms from
all the four properties together. However, the combinations of

the properties, applications, and the tools ensured a variety of
alarms.

4) Cause Points Analysis: We used TCS ECA (section
VI-A) for cause points analysis and framing of the queries in
settings 1 to 6. For settings 7 and 8, we manually performed
the cause points analysis and framing of queries, because we
did not have the tool support for Java/C++ programs and we
lacked knowledge in customizing the existing open source
static analysis tools available for these languages.

5) Inspection of Alarms: The manual inspection of the
selected alarms were carried out in the following settings to
compute the effort reduction due to our proposed approach.
(1) inspection using the original approach, where the review-
ers were allowed to use any method and tool as per their choice
and comfort while inspecting the alarms, and (2) inspection
using the cause points-centric approach (proposed approach).

Ideally, these two inspections should be performed by
different reviewers having the similar expertise and knowledge
about the applications (code familiarity). However, identifying
such reviewers is difficult. If the same reviewer is used in
both the settings, knowledge gained during first inspection
affects the effort in the second inspection. Besides, availability
of reviewers from industry is limited and costly. Hence we
conducted a variety of manual inspections of the alarms as
shown in Table III. We used different reviewers (but with
similar expertise) in some of the settings to eliminate the effect
of knowledge gained during the first inspection. The other
settings had the same reviewer in both the inspections. In this
case, inspection using the proposed approach is performed first
and the order of the two inspections is switched after handling
each half of the cause points (and the alarms) to mitigate the
effect of knowledge gained in the earlier round.

6) Results Discussion: Table III shows effort (time) spent
by the reviewers while inspecting the alarms in both the
settings, viz. original approach and proposed approach, and
the percentage effort reduction. These are respectively shown
as εorig, εnew, and εsaved (discussed in Section II). The results
demonstrate that the proposed approach reduces the manual
effort by 23% to 72% depending on the applications, review-
ers, analysis tools, and the verification properties. For example,
the variation in effort saving in the settings 1 and 2 is due to
the change in the reviewers. Further, the reduction in settings
2 and 3 also varied due to the change in properties because
inspection of OFUF alarm took longer than inspection of the
AIOB alarms. The average effort reduction was by 42%.

The selected applications were well-tested and analyzed us-
ing static analysis tools before, hence no error was uncovered
during the inspections of selected alarms. Note that this study
was to evaluate the effort reduction in industry (real-world)
setting due to the proposed approach.

7) Other Observations: (1) Table IV also shows maximum
execution time (average over 5 different runs) for the original
analysis and for an iteration of the proposed analyses. It
indicates that the performance overhead in terms of wait time
in the user interactions is not much in the proposed analysis.
(2) On an average, maximum three iterations (the client



TABLE III
EXPERIMENTAL RESULTS: REDUCTION IN MANUAL EFFORT

Appli-
cations

Tool
used

Setting
Verification property

(Alarms)
Reviewer(s) Manual effort (hours) %

Effort
reduction
(εsaved)

Original
approach

Proposed
approach

Original
approach
(εorig)

Proposed
approach

(εnew)

A1(C) TCS ECA
1 AIOB (215) R1# R3# 2.41 1.30 46.05
2 AIOB (215) R6 R6 6.83 3.48 49.04
3 AIOB+OFUF+ZD(1000) R2# R2# 9.15 6.36 30.49

A2 (C) TCS ECA 4 AIOB(196) R5+R6 R5+R6 3.29 2.53 23.10
A3 (C) TCS ECA 5 AIOB+ZD(243)* R7 R8 12.15 7.50 38.27
A4 (C) TCS ECA 6 IDP (2000)* R1 R2 2.74 1.24 54.74

A5 (C++)
Polyspace
Code Prover

7 AIOB+ZD (85) R4 R4 3.53 2.40 32.01

A6 (Java) NPEDetector 8 NDP (555)* R3# R2# 5.68 1.58 72.18

The alarms marked with * are subset of the alarms generated. Reviewers with # are familiar with the code and its functionality.

TABLE IV
DETAILS OF CAUSE POINTS IN APPLICATIONS A1 AND A2

A
p
p.

Verification
property

No. of
alarms

Alarms caused Type-wise cause point details Total
cause
points

Analysis time (sec)

Fully
Parti-
ally

Inter-
func

i lib p loop c ds
Original
analysis

Proposed
analysis

A1

ZD 39 20 19 6 0 0 9 0 6 34 49 62 18
AIOB 215 178 37 114 3 1 21 7 57 8 97 102 36
OFUF 754 262 492 515 16 0 77 14 390 247 744 197 54
AIOB+ZD+OFUF 1008 460 548 650 16 1 97 16 447 285 862 226 65

A2

ZD 41 14 27 11 0 0 6 0 9 32 47 63 31
AIOB 196 79 117 101 0 5 16 5 100 5 131 72 34
OFUF 847 439 408 515 0 13 109 24 683 180 1009 78 48
AIOB+ZD+OFUF 1084 532 552 627 0 14 121 24 709 211 1079 85 61

Percentage 47.41 52.58 60.68 0.87 0.84 11.34 2.23 59.75 24.93

analysis and user interactions) were required to resolve an
alarm. (3) The reviewers in our experiments provided positive
feedback about the proposed approach, however generalizing
the feedback would require a wider range of experiments using
a large number of reviewers and a large set of benchmarks and
verification properties.

C. Answering RQ2

RQ2 studies the distribution and contribution of alarm cause
points in practice for most commonly checked properties. It is
answered by summarizing details about the alarms and their
cause points in applications A1 and A2 and comparing them
for different properties.

1) Distribution of Cause Points: The results in Table IV
indicate that the cause points with c-unknown, ds-unknown
and p-unknown types are prevalent. About half of the alarms
(52%) are caused by more than one cause point (column
Partially). About 60% of the alarms had at least one cause
point located in a function other than the function of the alarm
(column Interfunc) explaining the effort reduction discussed in
Section VI-B6. Further, for 14% of the alarms, the cause points
were same as the alarm points due to complex arithmetic

...
..

0

.

200

.

400

.

600

.

800

.1 .

10

.

Alarms denoted as numbers

.C
ou

nt
of

C
au

se
po

in
ts

.

. ..ZD . ..AIOB . ..OFUF

Fig. 5. Property-wise comparison of cause points of alarms on application
A1

operations or arrays used in the alarm expressions (data not
shown in the table). We have omitted the details about the
grouping of cause points for want of space. Figure 5 compares
cause points of alarms in application A1 property-wise. It
shows that OFUF alarms have multiple cause points (up to
43) as compared to the alarms related to ZD and AIOB (due
to involvement of multiple variables in the OFUF alarms).
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TABLE V
CAUSE POINTS (UNKNOWNS) TYPE-WISE ERROR-CAUSE RATES

Cause point (unknown) types
i lib p loop c ds

No. of cause points 7 7 6 16 10 11
Alarms caused 11 7 6 56 12 21
Errors caused 11 7 3 20 0 2
% error-cause rate 100 100 50 35 0 9

2) Contribution of Cause Points: Figure 6 shows the cause
points of AIOB alarms in application A1, where the cause
points are arranged along X axis in the decreasing order of
their tc-scores computed with k = 2. The figure also shows
their fc-score and pc-score along with the alarms caused by
them. The figure indicates that about 75% of the alarms are
caused by the first 20% of the cause points (close to the 80-20
rule or the Pareto principle). Similar trend has been observed
on the other applications as well.

D. Answering RQ3 (Ranking Effectiveness)

RQ3 measures effectiveness of the presented cause points
ranking scheme in (a) identifying alarms that are more likely
to be true errors, and (b) inspecting a larger number of
alarms in a given inspection time. Answer to the latter part is
obvious by looking at the contribution of cause points shown
in Figure 6 (the 80-20 rule), where the contribution score can
be used as the primary ranking criterion. Thus, no further
specific experiments were performed for this. The first part
is answered by validating our hypothesis used in ranking the
unknown types (Section IV). To validate our hypothesis, we
computed error-cause rate for each of the unknown types7.
Let Wu be the set of alarms generated due to cause points
having u as their unknown type. The error-cause rate for an
unknown type u is computed as

number of true errors uncovered from alarms in Wu

total number of alarms in Wu
* 100

We selected a benchmark consisting of 20 C programs
written by 8 software developers during an exercise given for
improving their programming skills. The developers had upto
two years of experience. On an average the programs had 520

7We avoided performing experiments with a (fixed) given inspection time
because the time required to inspect alarms varies significantly depending on
several parameters as shown in Table III.

lines of code (max: 1320, min: 87). The programs were well-
tested but not verified using any static analysis tool. We used
Polyspace code prover8 to verify the programs, and randomly
selected 113 alarms reported for AIOB, ZD, OFUF, and IDP
properties. We manually performed cause points analysis and
inspected the alarms to compute error-cause rate for each of
the unknown types. The programs and analysis results are
available at https://sites.google.com/site/causepointsanalysis/.
Results of this activity are summarized in Table V. The errors
for i-unknown type were reported because of usage of user
provided values (inputs) to index an array (causing AIOB
errors). The 7 errors corresponding to lib-unknown type were
reported because of a failure to check the return values of
malloc function for null value. The results in Table V validate
our hypothesis used to rank the alarm cause points, demon-
strating effectiveness of the ranking in identifying alarms that
are more likely to be errors.

E. Handling Threats to the Results Validity

Threat 1 (Selection of reviewers). A major threat in generaliz-
ing our results is the selection of reviewers and methodology
used to measure the effort reduction. We tried to mitigate it
by selecting a variety of reviewers with different experience,
roles, and expertise (Table I) and conducting the inspections in
several combinations (Section VI-B). For example, the settings
in Table III vary based on reviewers’ familiarity about the
code and its functionality, because the familiarity influences
the amount of effort spent in the inspections.
Threat 2 (Selection of Alarms). Manual effort needed to
inspect alarms on an application also varies depending on
the verification properties, application complexity, and their
reporting by an analysis tool, thus posing a threat to validity
of our results. To address this, we selected (1) four most
commonly checked properties in practice, (2) a mixed set of
applications of varying size, complexity, domain, and program-
ming languages, and (3) tools of varying characteristics. Also,
we ensured a variety in the alarms and programs (developed
by multiple programmers) used to measure effectiveness of the
ranking scheme (Section VI-D).

VII. RELATED WORK

Here, we compare our technique with different classes of
the state-of-the-art techniques attempting to reduce the effort
in manual inspection of alarms.

8We preferred Polyspace over TCS ECA due to its higher precision.



1) Classification of Unknowns: Several studies like [2], [4],
[5] have broadly classified alarm causing unknowns into two
categories: input variables, and abstraction variables. We have
extended this classification to several unknown types depend-
ing on their origins. It is our first attempt to systematically
model the origins of unknowns as the alarms cause points and
shift the focus from alarms to them.

2) Ranking of Alarms: The existing alarms ranking tech-
niques (surveyed in [31], [32]) classify alarms as actionable
and non-actionable alarms, or prioritize them based on the
information about the code commit messages, code change
history, alarm fix history, user-feedback, etc. Unlike to these
techniques that rank the alarms directly, our scheme prioritizes
the alarm cause points, resulting in indirect ranking of the
alarms. To the best of our knowledge, no existing technique
exploits the types of the unknowns to rank the alarms.

3) Pruning of Alarms: Blackshear et al. [4] have proposed
a technique to suppress alarms generated from overly de-
monic environments (modular verification) based on semantic
inconsistency detection. Mangal et al. [19] have used user’s
feedback (liking or disliking of a subset of reports) to allow
users to tailor analysis precision and cost. Angelic verification
[17] has been used to constrain an analyzer to report alarms
only when no acceptable environment specification exists to
prove the property. These techniques help user by pruning the
alarms, while our technique simplifies the manual inspections
without pruning the alarms.

4) Framing of Queries: Our approach of forming the
queries is motivated by the work of Cousot et al. [16] that
proposes to use necessary preconditions over the sufficient
preconditions. The necessary preconditions are inferred and
hoisted to the method entry as required by the design by
contract programming methodology, whereas our approach
uses them for receiving the user inputs efficiently. The queries
proposed by Dillig et al. in [2] are formed during post-
processing of alarms and are ranked based on a cost function.
Our approach tightly couples the analysis and framing of
queries and ranks the queries as per the cause points. Also,
our style of formulating the queries reduces the number of
queries presented (Section V-A).

5) Semi-automatic Error Diagnosis: This class of tech-
niques target improving analysis precision while dealing with
the unknowns or providing diagnosis oriented information.
Dillig et al. [5] have used systematic reasoning about the
unknown values to improve precision and scalability of the
analysis. Our technique does not improve analysis precision
but reduces the manual inspection effort by locating the
causes to the alarms. Rival [6], [9] helped users in judging
a given alarm as true error or false alarm by proposing a
framework for semi-automatic investigation. The investigation
method uses semantic slicing requiring more sophisticated
algorithms, whereas our analysis is simpler to implement and
aims resolving multiple alarms (that have the same reason) in
one go.

6) Use of Triaging Checklists: Phang et al. [13] have
proposed use of triaging checklists to provide users with a

systematic guidance in identifying false alarms. Similar to
this, Ayewah et al. [33] have proposed use of a checklist
to enable more detailed inspections. The checklists based
approach still requires manual inspections to locate causes of
an alarm, whereas our technique directly presents the alarm
cause point(s) along with informative queries about them.

7) Use of Novel User-interfaces/Visualization Tools: Phang
et al. have presented a novel user interface toolkit called
Path Projection [15] to help users to visualize, navigate,
and understand program paths. Further, the commercial static
analysis tools like Astreé [34], and CodeSonar [11] provide
a visualization tool to support user during the manual inspec-
tions. Inspecting the alarms individually using these tools still
incurs redundancy for alarms that are caused due to the same
cause points. Our approach handles the redundancy problem
by resolving such alarms in one go. Further, these visualization
tools augment our technique to present the alarm cause points
and the paths more effectively.

8) Similarity-based Grouping of Alarms: It is widely used
technique to identify and group the similar alarms such that
only the alarm(s) marked as representative alarm(s) from each
group get inspected allowing to skip inspection of other alarms
from the group [3], [8], [18], [35]. This reduces the number
of alarms to be inspected. However, manual inspection of
the representative alarms is still a time-consuming activity
as they are inspected individually. Our technique can help to
reduce manual effort further by showing the cause points of
the representative alarms and presenting queries about them.

The following combinations of different aspects of our tech-
nique makes our work novel: modeling of unknowns and alarm
cause points, ranking of the cause points, formulating queries
about them, and interleaved rounds of the static analysis and
seeking user inputs at the alarm cause points. Further, since
our technique is orthogonal to many of the existing techniques,
we believe that they can be combined together to pool in the
complementary strengths.

VIII. CONCLUSION

In this paper, we have proposed a static analysis approach
centered around the alarm cause points to enable efficient and
effective handling of alarms. Our technique includes modeling
the sources of unknowns as alarm cause points, their ranking
using a pragmatic approach, and framing of cause points-
specific queries for efficient user interactions. These aspects
allow us to shift the focus in manual inspections from alarms
to their cause points, providing the following benefits: (a)
reducing the inspection cost, and (b) identifying more errors
in a given time. The effectiveness of the proposed technique
is demonstrated by our experiments in industry setting, with
the average effort reduction of 42%.

The proposed approach is generic and can also yield similar
benefits for manual inspections of alarms belonging to other
analysis properties, tools and programming languages. Also,
our approach can be applied in conjunction with many of the
existing alarms handling techniques to complement each other
and reduce the manual inspection effort further.
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APPENDIX

A. Data flow analysis for cause points computation

Let N (resp. E) be the set of nodes (resp. expressions and
loop statements) in the control flow graph of the program being
analyzed, and V be the set of variables in the program. Let T =
{i,c, loop,ds, lib, p} be the set of unknown types. We denote
a cause point using a tuple ⟨e,n, t⟩, where e ∈ E,n ∈ N, t ∈ T.

We use the following notational conventions:
• C = E×N×T is the set of cause points in the program.
• Mapping cpoints = V 7→ 2C relates a variable v ∈ V to

its potential cause points cp ⊂ 2C.
• α ranges over the set A = 2cpoints and represents a

mapping from variables to their cause points. α(v) returns
the set of cause points of variable v and α[v 7→ c] updates
the cause points of v to the set c in the mapping α.

• pred(n) returns predecessors of a given node n ∈ N.
• StartNode denotes the starting node in intraprocedural

CFG (control flow graph) of a function.
• input(v) denotes a function accepting values for v from

the user, environment, or the files.
• lib(...) denotes calls to library functions.
1) Lattice: Our analysis computes subsets of cpoints flow-

sensitively at each node n ∈ N. We use Inn and Outn to
denote the values computed at the start and exit of the node n
respectively. The lattice of these values is ⟨A = 2cpoints,⊓A ⟩.

As cpoints = V 7→ 2C is defined in terms of lattice (2C, ∪), the
meet operation ⊓A is defined as shown below. Given x,y ∈ A :

x⊓A y =
{(

v,
(
c ∪ c′

)) ∣∣ (v,c) ∈ x,
(
v,c′

)
∈ y

}
(4)

Let c1,c2 ∈ Constants; m,n ∈ N; u,v,w ∈ N; and e,e1,expr ∈ E

Inn =


{ } n = StartNodel

p∈pred(n)
A
Out p otherwise (5)

Outn =


X [v 7→ {⟨input(v),n, i⟩}] n : input(v)
Exprn (X ,v,expr) n : v = expr (6)

Exprn (X ,v,e) =



X [v 7→ { }] e : c1 or e : c1⊕ c2
X [v 7→ X (u)] e : u
X [v 7→ {⟨e,n,ds⟩}] e : u[v]
X [v 7→ {⟨e,n, lib⟩}] e : lib(...)
Exprn (X ,v,e1) e : c1⊕ e1 or e : e1⊕ c1
X [v 7→ {⟨e,n,c⟩}] e : u⊕w, X (u) ̸= ϕ

and X (w) ̸= ϕ
X [v 7→ X (u)∪X (w)] otherwise

(7)

Fig. 7. Data flow equations for computing cause points of unknowns.

2) Data Flow Equations: Figure 7 shows the data flow
equations to compute cause points of unknowns. For simplic-
ity of the equations, the handling of loop-unknowns (Sec-
tion III-B1) and function calls is not shown. The expression
expr in Equation 6 is assumed to have at most one operator
and does not cause side effects.

Note that the formalization does not cover computation of
cause points of p-unknown type (Section III-B2) as they need
to be computed differently to identify the paths carrying known
but unsafe values. This computation needs to refer to alarms
while the above formalization is independent of the alarms.


