
On Implementational Variations in
Static Analysis Tools

Tukaram Muske, Prasad Bokil
Tata Research Development and Design Center

54-B, Hadapsar I.E., Pune, India

Abstract—Static analysis tools are widely used in practice
due to their ability to detect defects early in the software
development life-cycle and that too while proving absence of
defects of certain patterns. There exists a large number of
such tools, and they are found to be varying depending on
several tool characteristics like analysis techniques, programming
languages supported, verification checks performed, scalability,
and performance. Many studies about these tools and their
variations, have been performed to improve the analysis results
or figure out a better tool amongst a set of available static
analysis tools. It is our observation that, in these studies only the
aforementioned tool characteristics are considered and compared,
and other implementational variations are usually ignored. In
this paper, we study the implementational variations occurring
among the static analysis tools, and experimentally demonstrate
their impact on the tool characteristics and other analysis related
attributes. The aim of this paper is twofold - a) to provide the
studied implementational variations as choices, along with their
pros and cons, to the designers or developers of static analysis
tools, and b) to provide an educating material to the tool users
so that the analysis results are better understood.

Keywords—Static Analysis tools; Analysis Warnings; Implemen-
tational Variations.

I. INTRODUCTION

In the last decade and a half, use of static analysis tools for
code quality assurance during development and maintenance
of software systems has increased [1]. With just the code as
input, these tools help automatically detect a class of errors
like Divide by Zero (ZD), Overflow-Underflow (OFUF), and
Array Index Out of Bound (AIOB). Given a program, a static
analysis tool reports if any error (within classes of errors) is
present in the program. The tool checks for safety of all the
relevant program points, and classifies every point either as
safe or unsafe (error). When such a classification cannot be
made, a sound tool conservatively reports that program point
as a warning. All such reported warnings need to be manually
inspected [2].

Many open source and commercial static analysis tools
are available, and they are of varied capabilities since they
have been developed for different purposes [3], [4]. A lot
of these tools have been studied and compared using sev-
eral methods [3], [4], [5]. These studies include evaluating
analysis tools based on one or more evaluation parameters
such as analysis techniques, precision, error detection rate,
scalability, performance, programming languages supported,
and verification checks supported. We refer to these parameters
as characteristics of the static analysis tools.

It is our observation that, besides the above characteristics,
there exist variations in static analysis tools that arise due to
different approaches taken while implementing the analysis
and reporting phases. We refer to such variations as imple-
mentational variations. We find there is a need to study these
variations as well since they directly or indirectly impact the
tool characteristics. Such an impact is explained by using
variation in the reporting of warnings from the code sample in
Figure 1. In this code sample, there are 5 AIOB warnings (at
lines 12, 32, 33, 42, and 43), and 2 OFUF warnings (at lines
15, and 18) since values of a and b are accepted at run-time.
Verifying this code using some tools reports 3 AIOB warnings
(at line 12, 32, and 43) and only one OFUF warning (at line
18), whereas some other tools report all the warnings (5 AIOB
and 2 OFUF) for the same code.

We observe, the above change in the number of reported
warnings is not due to the analysis techniques, but it is due
to the different reporting styles as described in Section II-B.
Thus, the reporting styles have direct impact on the precision
of the tools, and comparing precision of two analysis tools by
comparing warnings count alone may give a wrong impression.
We intentionally avoid associating the explained variations
with any of the actual tools since latest versions of the referred
tools may contain changes contradicting the current discussion.
Further, we limit our discussion to analysis warnings which
correspond to run-time errors.

To the best of our knowledge, such implementational
variations have not been identified or studied. In this paper,
we identify 5 main approaches which in turn lead to 11 imple-
mentational variations observed in some of the commercial and
open source static analysis tools. Further, we describe impact
of these variations on the tool characteristics (like precision,
performance, and scalability). We also study impact of these
variations on other attributes of static analysis like -

1) understanding of the results by tool users. This is needed
since many users report that the results of the static
analysis tools are not easily comprehended [6].

2) number of verification cycles that one may need to
perform after fixing the reported errors or warnings. This
is an important analysis attribute that affects the end-to-
end system verification time.

The key contributions of this paper are - a) identify-
ing implementational variations found among various static
analysis tools, and b) studying pros and cons of each im-
plementational variation. The implementational variations are
described in Section II, and their impact on tool characteristics

10. int a = readValue();
11. int b = readValue();
12. arr[b] = 0;

13. if (...){
14. f1();
15. a++;
16. }
17. else{
18. a++;
19. f2();
20. }

30. void f1()
31. {
32. arr[a] =
33. min(arr[b],100);
34. }

40. void f2()
41. {
42. arr[b] =
43. max(arr[a],-100);
44. }

Fig. 1: Example 1

void f3()
60.{
61. int a = 10;
62. if (...){
63. a = 0;
64. }
65.
66. b1 = c1 / a;
67. if (...){
68. b2 = c2 / a;
69. }
70.}

Fig. 2: Example 2

#define SIZE 10
80.void f4()
81.{
82. int b = 0;
83. int arr[SIZE];
84. if (...){
85. arr[SIZE]=0;//error
86. arr[c] = c++;
87. b = nonDet();
88. }
89. arr[b] = ...;
90.}

Fig. 3: Example 3

is empirically demonstrated in Section III. Sections IV and V,
respectively, presents the related work and conclusion.

II. IMPLEMENTATIONAL VARIATIONS

This section describes implementational variations among
static analysis tools by classifying them into five variation
categories that are observed during the source code analysis,
or the results reporting phase, or both. Further, it identifies
impact of these variations on characteristics of static analysis
tools (precision, scalability, and performance), and few other
attributes as described below:

1) Results understandability - how easy it is for a tool user
to understand the results.

2) Review efficiency - how quickly a tool user is able to
review all the generated warnings.

3) Multiple verification cycles (MVCs) - how many times
the user runs the analysis tool to analyze the complete
code by fixing all the reported errors/warnings.

Table I summarizes the described implementational varia-
tions and their impact. It includes -

1) column 1: variation categories, and examples with which
these categories are explained.

2) column 2: implementational variations in each category.
3) column 3: errors/warnings reported on the corresponding

example (mentioned in column 1), for each of the imple-
mentational variation. We use An (resp. On and Zn) to
indicate AIOB (resp. OFUF, and ZD) warning at line n.
The prefix err to these notations is used to denote the
respective error points at line n.

TABLE I: Summary of Implementational Variations

Variation
category

Implemen-
tational
variations

Example
Results

Impacted tool
characteristics

Impacted other
analysis attributes

Range
adjustment
approach
(Figure 1)

Range ad-
justed

A12, A32,
A43, O18

precision↑ understandability↓
review efficiency↑
MVCs↑

Range not
adjusted

A12, A32,
A33, A42,
A43, O15,
O18

precision↓ understandability↑
review efficiency↓
MVCs↓

Warnings
reporting
approach
(Figure 1)

All
warnings
reported

A12, A32,
A33, A42,
A43, O15,
O18

precision↓ understandability↑
review efficiency↓
MVCs↓

First
warning
reported

A12, A32,
A43, O15,
O18

precision↑ understandability↓
review efficiency↑
MVCs↑

Group of
warnings
reported

(A12, A33,
A42), A32,
A43, O15,
O18

precision↑ understandability↑
review efficiency↑
MVCs↓

Error deter-
mination
approach
(Figure 2)

All paths
error

Z66, Z68 detection rate↓ understandability↑

Single
path error

errZ66,
errZ66

detection rate↑ understandability↓

Post-error
paths
analysis
approach
(Figure 3)

Skip
post-error
paths

errA85 precision↑ understandability↓
MVCs↑

Analyze
post-error
paths

errA84,
A86, A89,
O86

precision↓ understandability↑
MVCs↓

Support for
property-
wise
verification

Available - scalability↑
analysis time↑

-

Not avail-
able

- scalability↓
analysis time↓

-

4) column 4 and 5: positively or negatively impacted anal-
ysis characteristics and other analysis attributes. We use
↑ and ↓ arrows, respectively, to indicate the positive and
negative impact as compared to each other.

A. Range Adjustment Approach

The static analysis tools need to compute values of vari-
ables at a few or all program points, in order to decide safety
of a relevant program point. For example in Figure 1, to
check if the increment operation at line 15 can ever result
in arithmetic overflow, a tool must identify the values that the
variable a can take at the same program point. These tools are
found to be based on a variety of analysis techniques like data
flow analysis, abstract interpretation [7], and Difference-Bound
Matrices [8] for computing values/ranges of the variables.

Precision of a static analysis tool, measured in terms of
number of output warnings, is one of the most studied tool
characteristics. We observe this characteristic is impacted by
the approach with which values of the variables are computed.
This approach (variation category) can be implemented on top
of any of the analysis techniques resulting in two implemen-
tational variations based on - whether the tools adjust the
values/ranges of the variables after a reported warning point.
For example, some of the static analysis tools adjust range of a
to [0..arraySize-1] after line 32 in Figure 1, where arraySize is
size of the array. This is because, a is used as index of an array
at line 32, and A32 is already marked as an AIOB warning. As
a result of this adjusted range, the increment operation at line
15 is identified as a safe point. However, the tools that do not
perform such range adjustment will report the same increment
operation as a warning (O15).

The impact of this variation category is summarized in
Table I, and it indicates the presence (resp. absence) of range
adjustment approach results in 4 (resp. 7) warnings for the
code in Figure 1. The change in number of warnings illustrates
impact of these variations on the tool’s precision. Further, these
variations also have impact on the -

1) understandability of the results, since many times the user
faces difficulty in understanding warnings resulted after
implementing range adjustment approach. For example,
user may find it difficult to understand why the increment
operation at line 18 is reported as a warning and the
similar operation at line 15 is a safe point even though the
values taken by a are same at both the program points.

2) review efficiency, since lower number of warnings gets
generated when range is adjusted and lesser effort is
incurred in their reviewing.

3) multiple verification cycles. This impact is discussed in
[2]. We avoid describing it due to lack of space.

B. Warnings Reporting Approach

We observe there exists three different methods to report
the warnings that are similar or correlated.
1) Report all warnings: This method reports all the warnings
even if they are similar.
2) Report the first warning: In this method, only the first
warning on a path is reported and reporting of the other similar
warnings on the same path is skipped. Ensuring the reported
(first) warning is not a defect, ensures all the rest warnings are
also safe. However, in the case when the first one turns out
to be an error, the required fix(es) may correct all the other
similar warning points in one or more verification cycles [2].
3) Report group of similar/correlated warnings: In this
method, all the similar warnings are reported as a group. This
grouping is such that result of reviewing of a grouped warning
(identified as leader warning [2], or dominant alarm [9]) is
applicable to reviewing of all other grouped warnings.

The approach used to report the generated warnings also
has a major impact on the precision of the static analysis
tools, as the number of output warnings varies considerably
as per the implemented reporting approach. This is explained
using analysis results in Table I for the code sample in Figure
1. The first method leads to reporting of total 7 warnings
(lower precision) while the other two methods will result
in 5 warnings/groups (higher precision as compared to the
first variation). Further, it is intuitive this variation category
has direct impact on the results understandability, review
efficiency, and MVCs.

C. Error Determination Approach

We observe the static analysis tools vary in two ways based
on an approach to decide an error.
1) Error via all paths: The first way is to report an error
only if it is an error through all the paths (must error), due
to which less number of errors are reported (lower detection
rate), but with higher accuracy. Further, in this approach, if a
program point is an error via one or more paths, but not by all
the paths, such a point is reported as a warning. For example,
with this approach both the division operations in Figure 2 are
reported as divide by zero warnings (Z66, and Z68).

2) Error via single path: The second way is to report an
error if a program point is an error through any of the paths
reaching at the error program point (may error). This way it
reports a large number of errors, of which few may be spurious.
For example, the division operations at line 8 and 10 will be
reported as errors (errZ66 and errZ68), where errZ68 may
turn out as a false error.

D. Post-Error Paths Analysis Approach

This category deals with variation arising due to - should
the successive paths after a reported error be analyzed? This
question leads to two variations as described below.
1) Skip analysis of post-error paths: It is observed that,
some tools skip analysis of the paths that originate from
an error. These tools first demand corrective action for the
reported error, and then only the later code portion is analyzed.
For example, this approach stops analysis after reporting of
errA85 (Figure 3), and it results in skipping of analysis of
the successive program points (points at line 86 and 87). Note
that in this method only the program points that are always on
erroneous paths will be skipped from the analysis. As a result
of this method, the array access at line 89 is reported as safe
even though non-deterministic values are assigned to b at line
87. It indicates this approach has a direct impact on the results
understandability and also will surely lead to MVCs.
2) Analyze post-error paths: As opposed to the first approach,
some tools take a conservative approach after reporting of an
error and continue with the analysis. Thus, with this approach
the program points that appear on the erroneous paths get
analyzed. It is intuitive that this approach eliminates the
MVCs and improves the results understandability. However,
this approach results in more number of warnings (lesser
precision) as compared to the warnings reported due to the
first approach. For example, this approach reports 3 warnings
(A86, O86, and A89) for the code in Figure 3, while the first
approach reports none of these.

E. Support for Property-wise Verification

It is our observation that, some tools allow selecting a
property to be verified independent of other properties, while
other tools analyze all the properties together providing no
choice for selecting a property. The characteristics impacted
by this approach are described below.
1) Scalability: The property-wise verification helps tools to
achieve scalability on very large systems, since only the
property-specific data and only the property relevant code need
to be analyzed as against to the other approach. Also, many
times a user is interested in focusing on a critical property like
memory leaks, synchronization, or buffer overflows, and may
wish to ignore other properties like AIOB, OFUF, and ZD.
2) Performance: The overall time taken to analyze the system
can be very large in property-wise verification as compared to
the analysis time with analyzing all properties together.

III. EXPERIMENTAL RESULTS

We used TCS ECA [10] to implement the described
implementational variations and demonstrate their impact on
analysis characteristics. By implementing all these variations
in one tool, we ensured the analysis technique and its com-
putational precision remains same for all the implemented

variations. By default, TCS ECA does not adjust the ranges,
reports warnings in groups, reports all-path errors, continues
analysis of post-error paths, and allows selecting a property to
be verified. We enabled one variation at a time while keeping
other variations to default, so that only the impact of enabled
variation is captured.

TABLE II: Experimental Results

Variation
category

Implementational
variations #Warnings #Errors #VCs

Range
adjustment

Range adjusted 865 6 3
Range not adjusted 1266 6 2

Warnings
reporting

All warnings reported 1381 6 2
First warning reported 1280 6 3
Groups of warnings reported 1266 6 2

Error
determination

All paths error 1266 6 2
Single path error 1251 21 2

Post-error
paths analysis

Skip post-error paths 1153 3 4
Analyze post-error paths 1266 6 2

We selected an embedded system application of 40 KLOC
size, that was previously tested and verified. In order to check
impact of the variation categories dealing with errors (as in
Sections II-C, and II-D), we manually injected few faults in
the application. Using each variant of TCS ECA, the buggy
application was verified for AIOB, OFUF, and ZD properties
since these are commonly checked properties in software
verification. Table II presents results of this experiment in
terms of number of output warnings and errors after first veri-
fication cycle. Column #VCs denotes the number of performed
verification cycles. These results indicate impact of the imple-
mentational variations on tool’s precision, error detection rate,
and MVCs. In this table, results about the variation category -
support for property-wise verification - are not provided since
its impact on analysis time and scalability is obvious. It should
be noted that the results are only to demonstrate the positive or
negative impact of implementational variations, and it should
not be used for quantifying the impact. The quantification
would require a rigorous and wider range of experiments.

IV. RELATED WORK

There exist several studies (like [3], [4], [5], [11], [12],
[13]) focused on comparing the features of various static
analysis tools. In these studies, precision and detection rates
of analysis tools, are the two mostly compared characteristics.
For example, Kratkiewicz [4] has used various parameters
(detection rate, false alarm rate, performance, etc) to compare
five static analysis tools that were capable of detecting buffer
overflows in C code. Further, the number of verification
properties and programming languages supported are widely
compared features. For instance, Emanuelsson et al. [3] have
compared properties supported by three commercial tools.

To the best of our knowledge, none of the existing studies
have identified and studied the impact of implementational
variations while comparing the characteristics of static anal-
ysis tools. Ignoring these implementational variations during
studies that target comparing precision of the different analysis
techniques, can give false impressions about the results, since
these techniques can be coupled with different implementa-
tional variations. It is our first attempt to study the impact of
the implementational variations on different analysis-related
parameters and attributes.

V. CONCLUSION

In this paper, we have identified the variations observed
during the implementation of analysis tools independent of
their analysis technique, and have categorized them into five
variation-categories. Each variation is described along with its
impact-relation on analysis characteristics such as precision,
error detection rate, and performance. Further, impact of these
variations on other analysis related attributes (results under-
standability, review efficiency, MVCs) is also described.

We believe this study of implementational variations can
be useful to the designers or developers of static analysis
tools to make proper choices of implementational variations.
Further, understanding of these variations can help tool users
to understand the results better. In near future, we would like to
work on quantifying impact of these variations on the studied
analysis parameters.

REFERENCES

[1] N. Nagappan and T. Ball, “Static analysis tools as early indicators of
pre-release defect density,” in Proceedings of the 27th International
Conference on Software Engineering, ser. ICSE ’05. New York, NY,
USA: ACM, 2005, pp. 580–586.

[2] T. Muske, A. Baid, and T. Sanas, “Review efforts reduction by
partitioning of static analysis warnings,” in Source Code Analysis
and Manipulation (SCAM), 2013 IEEE 13th International Working
Conference on, Sept 2013, pp. 106–115.

[3] P. Emanuelsson and U. Nilsson, “A comparative study of industrial
static analysis tools,” Electronic notes in theoretical computer science,
vol. 217, pp. 5–21, 2008.

[4] K. J. Kratkiewicz, “Evaluating static analysis tools for detecting buffer
overflows in c code,” DTIC Document, Tech. Rep., 2005.

[5] V. Okun, A. Delaitre, and P. E. Black, “Report on the static analysis
tool exposition (sate) iv,” NIST Special Publication, vol. 500, p. 297,
2013.

[6] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-
ings of the 2013 International Conference on Software Engineering, ser.
ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 672–681.

[7] P. Cousot, “Abstract interpretation,” ACM Computing Surveys (CSUR),
vol. 28, no. 2, pp. 324–328, 1996.

[8] A. Min, “A new numerical abstract domain based on difference-bound
matrices,” in Programs as Data Objects, ser. Lecture Notes in Computer
Science, O. Danvy and A. Filinski, Eds. Springer Berlin Heidelberg,
2001, vol. 2053, pp. 155–172.

[9] D. Zhang, D. Jin, Y. Gong, and H. Zhang, “Diagnosis-oriented alarm
correlations,” in Software Engineering Conference (APSEC, 2013 20th
Asia-Pacific, vol. 1, Dec 2013, pp. 172–179.

[10] “TCS Embedded Code Analyzer (TCS ECA).” [Online].
Available: http://www.tcs.com/offerings/engineering services/Pages/
TCS-Embedded-Code-Analyzer.aspx

[11] M. A. Al Mamun, A. Khanam, H. Grahn, and R. Feldt, “Comparing
four static analysis tools for java concurrency bugs,” in Third Swedish
Workshop on Multi-Core Computing (MCC-10). Chalmers University
of Technology, 2010.

[12] M. S. Ware and C. J. Fox, “Securing java code: Heuristics and an
evaluation of static analysis tools,” in Proceedings of the 2008 Workshop
on Static Analysis, ser. SAW ’08. New York, NY, USA: ACM, 2008,
pp. 12–21.

[13] P. Li and B. Cui, “A comparative study on software vulnerability static
analysis techniques and tools,” in Information Theory and Information
Security (ICITIS), 2010 IEEE International Conference on, Dec 2010,
pp. 521–524.

http://www.tcs.com/offerings/engineering_services/Pages/TCS-Embedded-Code-Analyzer.aspx
http://www.tcs.com/offerings/engineering_services/Pages/TCS-Embedded-Code-Analyzer.aspx

	Introduction
	Implementational Variations
	Range Adjustment Approach
	Warnings Reporting Approach
	Error Determination Approach
	Post-Error Paths Analysis Approach
	Support for Property-wise Verification

	Experimental Results
	Related Work
	Conclusion
	References

