
Feature based Structuring and Composing of SDLC
Artifacts

Nishigandha Hirve
TRDDC

Pune 411 013, India
nishigandha.hirve@tcs.com

Tukaram Muske
TRDDC

Pune 411 013, India
t.muske@tcs.com

Ulka Shrotri
TRDDC

Pune 411 013, India
ulka.s@tcs.com

R. Venkatesh
TRDDC

Pune 411 013, India
r.venky@tcs.com

Abstract— Product organizations often need to develop variants
of the same basic product. All the product development life-cycle
artifacts from requirements documents to testing artifacts have
to be developed for each variant. Storing these artifacts as core
assets and structuring them as units that can be composed to get
the final artifacts can greatly reduce the cost and improve the
quality of the resultant product. This paper proposes a structural
alignment of core assets corresponding to the various phases of
software development to features of the product family and
aspect weaving as a core assets composition operator. Aspect
Oriented Programming (AOP) is used for code and an aspect
oriented extension to XML is used for other artifacts. These ideas
are validated through a prototype toolset that captures the
complete Software Development Life Cycle (SDLC) process and
allows the user to model the commonalities and variations as
features, associate them to core assets and build the product
automatically. This paper presents our approach and the details
of the toolset along with a case study of a Library System.

I. INTRODUCTION

.Planned software reuse as recommended by Software
Product Line Engineering (SPLE) [1] can considerably
improve product development cost and time. SPLE and Feature
Modeling [2] identify variations and commonalities between
products in a product line and model them as features [3]. This
paper proposes the structuring of the different software
development artifacts so as to align them with the structure of
the feature model. Once this is achieved, composition similar to
weaving in aspect oriented programming can be used to derive
artifacts at the product level from artifacts at the feature level.

Development of each product from the feature model
follows the entire SDLC where the resultant requirements
document has to be reviewed and approved by relevant
stakeholders and the final product has to be tested for this
specific combination of features. Therefore, just producing the
final product by composition will not suffice and there is a
need to generate all artifacts required by SDLC using similar
composition. This paper adapts the idea of Aspect Oriented
Programming (AOP) applied to product development, to other
non-graphical SDLC artifacts like documents and test harness.
Documents are composed using an aspect oriented extension to
XML and test harness is composed by writing the test harness
in a programming language and using AOP.

The prototype toolset presented here captures complete
SDLC process from product requirements gathering to its
release. This toolset mainly consists of two parts, core assets
repository and product generator. Creation of core assets
repository involves identifying features, modeling them using
ASADAL [4] and identifying, developing, and maintaining
feature-based core assets. ASADAL allows selection of
features required for product development. Product generator
identifies and composes the required core assets together into a
final product.

We demonstrate the toolset and its benefits using library
domain case study. This case study illustrates the identification
of variations and commonalities in a library product family and
their modeling as a feature model. It also illustrates the
structuring of other core assets consisting of various
development artifacts so that they are aligned with the feature
model. AspectJ – AOP implementation for Java [5] is used as
the core assets composition operator to handle these variations
between product variants for the artifacts implemented in Java.
AOP has been chosen as it provides a very general and flexible
set of composition operators. A XML weaving tool is used to
implement a composition operator for the document artifacts.

Related work: Various other toolsets are available for
generating products from a product family, customizing
products [7], and configuring product line features [8]. Kyo C.
Kang has combined feature oriented analysis with AOP [9].
Studies have shown that feature models can be used for product
derivation [6]. Also, feature modeling is supported by several
tools [10],[11].

Compared to the tools listed above, our prototype toolset
provides support for different artifacts like documents and
code, required in a typical SDLC. It mainly investigates AOP
based techniques to compose both code and documents.

II. TOOLSET

Figure 1 shows the detailed toolset architecture. The toolset
organization is mainly divided into Core assets repository and
Product generator.

A. Core Asset Repository

The core asset repository stores all the assets including
feature models and associated documents and code.

1) Feature Modeling in ASADAL.
We use ASADAL tool for feature modeling that supports

FODA notations and allows selection of features for product
development. We associate the feature-specific core assets
information to the description field in ASADAL using a set of
keywords. The keyword set includes keywords such as
SOURCE, CONFIG, XML, and TESTCASES.

2) Structuring and Implementation of Core Assets
The required set of core assets is identified from feature

model and mandatory, optional and alternative features are
implemented separately. The core assets for optional features
are implemented as aspects in order to manage variations found
in the product family. Whenever an optional or alternative
feature is selected, its corresponding aspect gets included in the
source list. These aspects modify the functionality of the
mandatory feature to provide the product behavior with respect
to the selected feature. This type of implementation also
provides traceability from features to their implementations.

Code Composition: The composition of code related core
assets is similar to the other AOP based applications.

Test Harness Composition: As the test harness is written in
a programming language using AOP, its composition is exactly
similar to the code composition.

Documents Composition: AOP extensions to XML help to
manage documentation at the feature level. This requires
structuring of the feature based documents using XML and
additional AOP tags. The organizational alignment between
feature model and document states that document is either a
base document (associated with mandatory feature) or an
aspect document (associated with optional, alternate and or
feature).

The base document has a standard XML structure and
consists of tags, attributes with values and content. Each path
from the root to any tag in the document specifies a join point.
Aspect documents also have standard XML structure
specifying advices to modify the contents at a join point in the
base document. An advice is also an XML path from the root to
an advice tag and optionally includes the child. The advice tags
can be either “after”, “before”, “replace” or “delete”.

The document composition algorithm is:

Let p = r, t1 … tn, a, c be a path in the aspect document where
− r is the root node,
− a is the advice node having tag “after”, “before”,

“replace” or “delete”
− t1…tn are nodes in the path from r to a in the aspect

document
− c is the child tag of a and is of the form <ctag, id=val>
For each such path p in the aspect document, it matches a
corresponding path p1 = r1, t1 … tn, in the base document such
that the tags of t1 … tn are identical in both p and p1 and if any
of t1 … tn has an attribute id, then the value of the attribute
also should be the same. For each such match if the tag of a is
‘Before/After’ then c is added as the first/last child of tn
respectively in the base document. In the case of
Replace/Delete tag, the child of tn with the same tag and value
of attribute id as c is replaced/deleted in the base document

Figure 1. Toolset architecture

The values of attributes other than id are not considered for
the match.

B. Product Generator

When a new product is to be built, required features are
selected from feature model and exported as an ascii file. The
exported file also includes associations between the selected
features and corresponding requirements, test case,
implementation and test harness aspect file names. The core
assets collecter extracts the required files from the source code
and document repository. Once all the files have been
extracted the File Generator generates a makefile that invokes
aspectJava and the java compiler to build the application as
well as the test harness. The product and test suite builder then
executes these makefiles. The test harness is then run on the
application and the results logged.

Orthogonally the Document merger invokes the XML weaver
on all the test case and other base and aspect documents
extracted by the core assets collector to generate requirements
and test case documents for the final product.

III. LIBRARY SYSTEM CASE STUDY

This section illustrates the features of the toolset using a
Library System product family case study, where a particular
set of requirements is considered.

Product Documents

Selected features

Product Generator

Core assets
collector

Files
Generator

Documents Source files Make files

Product
Builder

Test suite
Builder

Documents
Merger

Test suites Final Product

Product Tester

Final Product Test Results

Product Development

Selected
features

information

ASADAL Core Assets

Core assets

Core assets

Core Assets Repository

Configuration file

A. Library System Domain

Library systems maintain books and members and offer
services to members to reserve, borrow and return books.
There are two types of members (Ordinary and Privileged) and
three types of books (Journal, Technical book and Magazine).
The number of books to borrow and days allowed are
determined by the member and book types. Library system
may allow members to put claims on the books and the number
of claims varies as per member type. There may be a late return
fine. Although we have implemented several features as part of
our case study, only few of them are described in detail here in
the interest of brevity.

B. Modeling and Implementation of Library Systems

Using the concepts of SPLE and feature modeling, we
study the Library system domain and systematically elicit the
variations – Member type, book type, book claim, number of
books and days allowed, Late return fine etc.

1) Feature Modeling
The features identified from variations and commonalities

are modeled in the feature model, using FODA notations, as
shown in Figure 2. We have shown only a small set of
selectable features in Capability and Implementation Layer for
clear representation. Mandatory features such as Member and
Book Maintenance are omitted from the feature model.

2) Library System Core assets
The various core assets for Library system can be

categorized into – primary assets (feature model, requirements,
class diagrams), components (code implementations such as
core service component, claim processing component), test
harness assets (test cases’ implementations, test data, test
results), various tools used (Tomcat, ASADAL, product
generation tools), configuration files, etc.

3) Library System Implementation
We use client-server architecture to implement the library

system with Java (JDK1.5.0), JSP, AspectJ (release 1.5) [12]
and Tomcat [13]. These implementation details will affect the
feature representations. A feature will have its corresponding
functionality component represented in implementation layer.
For example, the core services are implemented by core service
component which is further linked to Java implementation to
specify its source files. The Java implementation feature is
further divided into client and server components.

C. Core Asset Composition Technique

The source implementation of library functionality has been
done in AspectJ with variants of each feature implemented as
aspects. AspectJ has also been used to implement the test
harness. Since the implementation of functionality is similar to
other aspect oriented applications, in this paper we only
describe the test harness implementation in detail.

1) Test Harness Composition
The core assets corresponding to test harness are

implemented similar to other basic functionality components.
The variable part in the test cases is put into the aspects which
modifies the behavior of the mandatory test cases.

Figure 2. Library system feature model

Example: The test cases for the borrow operation are
implemented in BorrowTests class. We consider following test
case, in pseudo code, for book unavailable scenario.

class BorrowTests{
…………
Function chkPostCondition () {

Check_for_msg “The requested book is not
available in the Library”;
return true if successful, else false;

} }

In the presence of claim, if the requested book to borrow is
unavailable, it gets reserved for the member. Thus, when claim
is selected, the borrow operation behaves differently and above
test case needs modification to check for claim object. The
required modification to borrow test case, due to claim, is
achieved using below piece of aspect where method
chkPostCondition is overridden by the below aspect.

around():BorrowTest.chkPostCondition();{
check_for_msg “The requested book is not
available in the Library. The same book is
reserved for you.”
check_for claim_object;
return true if successful, else false;

}

2) Documents Composition
Various documents are structured with respect to features

and formatted as per AOP concepts. For example, for better
reuse, test case documents are maintained at feature level for
Core services and optional Claim feature separately. These
documents will be meaningful only if the Claim feature is
selected. This necessitates their formatting in a particular
manner to manage variability which includes specifying the
required and related join points, pointcuts and advices in an
AOP way. A join point from SimpleBorrow.xml, the test case
document for Core services feature is shown below.

Library System

MemberType

Services

Claim

BookType

Ordinary Privileged

Magazine Journal

Technical book

Claim
processing

Claim java
Implementation

Core service
component

Implementation layer

Composed-of
Implemented-by

Optional feature

Legend

Core
Services

Core Service
Java

Implementation

Capability Layer

<TestCase id=2> <CheckResult>
<Check id="a"> Check for return message: "The
requested book is not available in the
Library".</Check>
</CheckResult> </TestCase>

The elements TestCase and CheckResult specify the join
point. In presence of Claim, the information in check results
needs to be modified as the test case behaviour is changed.
Additional checks for claim message and claim object are
added using following advice from BorrowClaim.xml.

<TestCase id="2"> <CheckResult> <After>
<Check id="b">Check for return message: "The
same book is reserved for you"</Check>
<Check id="c">Check For loan object for Title1
with member 13 and bookcopy of Title1</Check>
</After> <CheckResult> </Case>

Here, the ‘After’ element specifies the After advice to add
the extra checks in the target test case. The test case mapping is
achieved using common value for “id” attribute. Thus the
information with elements and attribute values specifies the
pointcut. When Claim feature is selected, the XML documents
composition occurs and the resulting test document for the
above mentioned scenario appears as shown below.

<TestCase id=2> <CheckResult>
<Check id="a">Check for return message: "The
requested book is not available in the
Library."</Check>
<Check id="b">Check for return message: "The
same book is reserved for you"</Check>
<Check id="c">Check For loan object for Title1
with member 13 and bookcopy of Title1</Check>
</CheckResult> </TestCase>

Requirements and design documents are
similarly structured and XML weaving is used
for composition.

D. Product Development

As the entire required core assets base is in-place in
repository, product development simply becomes the process
of picking-up and combining the related components. We can
easily develop Library systems with the required features and
release the tested library system to the market.

IV. CONCLUSION

We have demonstrated the feasibility of aligning the
structure of all software development assets with feature

models and the use of an aspect composition operator to derive
a specific artifact corresponding to a specific product.
Successful application of the proposed approach requires the
documents and code to be structured in a way that is amenable
to aspect composition. In particular requirements and design
documents should be structured as a tree with the leaves being
simple elements.

We believe the ideas presented can be extended to larger
projects.

ACKNOWLEDGEMENT

We sincerely thank Suparna Soman for contributing
through multiple reviews to make this paper better.

REFERENCES
[1] Clements, P., Northorp, L., “Software Product Lines: Practices and

Patterns”, 2002

[2] Kwanwoo Lee, Kyo C. Kang, and Jaejoon Lee., “Concepts and
Guidelines for Feature Modelling for Product Line Software
Engineering, Software Reuse: Method, Techniques and Tools”, ICSR-7,
April 2002

[3] Jaejoon Lee, Dirk Muthig, “Feature-oriented variability management in
product line engineering”, Communications of the ACM December
2006/Vol. 49, No. 12.

[4] Kyungseok Kim, Hyejung Kim, Kyo C. Kang, “ASADAL - a tool
system for co-development of software and test environment based on
product line engineering” ICSE '06

[5] Ramnivas Laddad, “AspectJ in Action: Practical aspect-oriented
programming”, 2003

[6] Spinczyk, O., Papajewski, H., “Using Feature Models for Product
Derivation”, SPLC 2006

[7] Mazen Saleh, Hassan Gomaa, “Separation of Concerns in Software
Product Line Engineering”, ICSE 2005

[8] Andreas Hein, John MacGregor, Steffen Thiel, “Configuring Software
Product Line Features” ECOOP 2001

[9] Kwanwoo Lee, Kyo C. Kang, Minseong Kim, “Combining Feature-
Oriented Analysis and Aspect-Oriented Programming for Product Line
Asset Development”, SPLC 2006

[10] Alain Forget, Dave Arnold, Sonia Chiasson “ CASE-FX: feature
modeling support in an OO Case tool”, OOPSLA 2007

[11] Thomas Leich, Sven Apel, Laura Marnitz, Gunter Saake, “Tool support
for feature-oriented software development: featureIDE: an Eclipse-based
approach”, OOPSLA 2005

[12] AspectJ (release 1.5), available at as on March 09, 2010,
http://www.eclipse.org/aspectj/index.php

[13] Apache Tomcat URL as on March 09, 2010, http://tomcat.apache.org/

