Feature based Structuring and Composing of SDLC
Artifacts

Tukaram Muske

TRDDC
Pune 411 013, India
t.muske@tcs.com

Nishigandha Hirve

TRDDC
Pune 411 013, India
nishigandha.hirve@tcs.com

Abstract— Product organizations often need to develop varigs

of the same basic product. All the product developent life-cycle

artifacts from requirements documents to testing atifacts have

to be developed for each variant. Storing these afacts as core
assets and structuring them as units that can be ngposed to get
the final artifacts can greatly reduce the cost andmprove the

quality of the resultant product. This paper proposs a structural

alignment of core assets corresponding to the vatis phases of
software development to features of the product faity and

aspect weaving as a core assets composition operatdspect

Oriented Programming (AOP) is used for code and araspect
oriented extension to XML is used for other artifa¢s. These ideas
are validated through a prototype toolset that capires the

complete Software Development Life Cycle (SDLC) pmess and
allows the user to model the commonalities and vaadions as
features, associate them to core assets and builtet product

automatically. This paper presents our approach andhe details

of the toolset along with a case study of a Librangystem.

. INTRODUCTION

.Planned software reuse as recommended by Softwa
Product Line Engineering (SPLE) [1] can considerabl

improve product development cost and time. SPLEFReature
Modeling [2] identify variations and commonalitibgtween
products in a product line and model them as feat{8]. This
paper proposes the structuring of the differenttvane
development artifacts so as to align them withdtracture of
the feature model. Once this is achieved, composgimilar to
weaving in aspect oriented programming can be tseérive
artifacts at the product level from artifacts a thature level.

Development of each product from the feature model

follows the entire SDLC where the resultant requiats

Ulka Shrotri

TRDDC
Pune 411 013, India
ulka.s@tcs.com

R. Venkatesh

TRDDC
Pune 411 013, India
r.venky@tcs.com

The prototype toolset presented here captures etenpl
SDLC process from product requirements gatheringitdo
release. This toolset mainly consists of two pattse assets
repository and product generator. Creation of cassets
repository involves identifying features, modelitigem using
ASADAL [4] and identifying, developing, and maint&ig
feature-based core assets. ASADAL allows selectain
features required for product development. Prodcterator
identifies and composes the required core assgéthter into a
final product.

We demonstrate the toolset and its benefits ushrary
domain case study. This case study illustratesdrification
of variations and commonalities in a library prodfamily and
their modeling as a feature model. It also illussathe
structuring of other core assets consisting of o
development artifacts so that they are aligned ttith feature
model. Aspectd — AOP implementation for Java [Slsed as
the core assets composition operator to handle thasations
between product variants for the artifacts impletednn Java.
AOP has been chosen as it provides a very genaddlexible
2t of composition operators. A XML weaving tooluised to
implement a composition operator for the documetifaats.

Related work: Various other toolsets are available for
generating products from a product family, custingz
products [7], and configuring product line featuf@k Kyo C.
Kang has combined feature oriented analysis withPAQ).
Studies have shown that feature models can befaspdoduct
derivation [6]. Also, feature modeling is supported several
tools [10],[11].

Compared to the tools listed above, our prototydset
provides support for different artifacts like docemts and

document has to be reviewed and approved by rdlevanode, required in a typical SDLC. It mainly investies AOP

stakeholders and the final product has to be tekiedhis
specific combination of features. Therefore, justducing the
final product by composition will not suffice antlere is a
need to generate all artifacts required by SDLQ@@similar
composition. This paper adapts the idea of Aspa@enfed
Programming (AOP) applied to product developmenipther
non-graphical SDLC artifacts like documents and lesness.
Documents are composed using an aspect orientedsiom to
XML and test harness is composed by writing thé hasness
in a programming language and using AOP.

based techniques to compose both code and documents

. TOOLSET

Figure 1 shows the detailed toolset architectuhe fbolset
organization is mainly divided into Core assetsosgory and
Product generator.

A. Core Asset Repository

The core asset repository stores all the assetading
feature models and associated documents and code.

1) Feature Modeling in ASADAL.

We use ASADAL tool for feature modeling that sugpor

FODA notations and allows selection of features govduct
development. We associate the feature-specific em®ets
information to the description field in ASADAL ugjra set of
keywords. The keyword set includes keywords such
SOURCE, CONFIG, XML, and TESTCASES.

2) Sructuring and Implementation of Core Assets

The required set of core assets is identified fleature
model and mandatory, optional and alternative featware
implemented separately. The core assets for optieatures
are implemented as aspects in order to managedigasdound
in the product family. Whenever an optional or rlétive
feature is selected, its corresponding aspectiggtsded in the
source list. These aspects modify the functionatify the
mandatory feature to provide the product behavith vespect
to the selected feature. This type of implementataso
provides traceability from features to their impkartations.

Code Composition; The composition of code relatece c

assets is similar to the other AOP based applicatio

Test Harness Composition: As the test harnessiitemwin
a programming language using AOP, its compositsoexactly
similar to the code composition.

Documents Composition: AOP extensions to XML help t

manage documentation at the feature level. Thislires
structuring of the feature based documents usingL Xdvid
additional AOP tags. The organizational alignmestween
feature model and document states that documesithisr a
base document (associated with mandatory featurepno
aspect document (associated with optional, alterrseid or
feature).

as

Core Assets Repository

ASADAL Core Assets

Selected features Core assets

Product Generator

Selected
feature
informati%;
N
Files
_Generatol

Core assets

collectol Core assets

Make|files Source files Documents

Product
Builder

Final %roduct

.| Product Tester

‘ 1
v v

v Final Product Test Results 4

Configuration file Product Documents
Product Development

Documents
Merger

Test suite
Builder

Test suites

Figure 1. Toolset architecture

The base document has a standard XML structure and The values of attributes other than id are not icemed for

consists of tags, attributes with values and cdntéach path
from the root to any tag in the document speciigsin point.
Aspect
specifying advices to modify the contents at a jpamt in the
base document. An advice is also an XML path froenrbot to
an advice tag and optionally includes the childe Bldvice tags

can be either “after”, “before”, “replace” or “déds.

The document composition algorithm is:

Letp=r,t; ... t,, @ c be a path in the aspect document whereand document repository.

- risthe root node,

— ais the advice node having tag “after”, “
“replace” or “delete”

- t;...t, are nodes in the path framo a in the aspect
document

— cisthe child tag o& and is of the form etag, id=val>

For each such path p in the aspect document, ichesata

corresponding path p1 =r1, t1 ... tn, in the basaud®@nt such

that the tags of t1 ... tn are identical in both g at and if any

of t1 ... tn has an attribute id, then the value ke attribute

also should be the same. For each such match fathef a is

‘Before/After’ then c is added as the first/lagtild of tn

respectively in the base document. In the case

Replace/Delete tag, the child of tn with the saatgand value

of attribute id as c is replaced/deleted in theelscument

before”,

the match.

documents also have standard XML structur®. Product Generator

When a new product is to be built, required featusee
selected from feature model and exported as anmfdsciThe
exported file also includes associations betweenstlected
features and corresponding requirements, test case,
implementation and test harness aspect file nafftas.core
assets collecter extracts the required files from the source code
Once all the files hawenb
extracted thd-ile Generator generates a makefile that invokes
aspectJava and the java compiler to build the emjidin as
well as the test harness. Tprduct andtest suite builder then
executes these makefiles. The test harness isrtireon the
application and the results logged.

Orthogonally theDocument merger invokes the XML weaver
on all the test case and other base and aspecimdats
extracted by theore assets collector to generate requirements
and test case documents for the final product.

Ill. LIBRARY SYSTEM CASE STUDY

f This section illustrates the features of the tdoilssng a
c1_ibrary System product family case study, whereadigular
set of requirements is considered.

A. Library System Domain

Library systems maintain books and members and offe

services to members to reserve, borrow and retwwokd
There are two types of members (Ordinary and fegetl) and
three types of books (Journal, Technical book aradyazine).

The number of books to borrow and days allowed are

determined by the member and book types. Librastesy
may allow members to put claims on the books aadchtimber
of claims varies as per member type. There maylagaeturn
fine. Although we have implemented several featasepart of
our case study, only few of them are describecetaitihere in
the interest of brevity.

B. Modeling and Implementation of Library Systems

Using the concepts of SPLE and feature modeling, we

study the Library system domain and systematioalilgit the
variations — Member type, book type, book claimmber of
books and days allowed, Late return fine etc.

1) Feature Modeling
The features identified from variations and comntitiea
are modeled in the feature model, using FODA nmtsti as

shown in Figure 2. We have shown only a small det o

selectable features in Capability and Implementatiayer for
clear representation. Mandatory features such ambde and
Book Maintenance are omitted from the feature model

2) Library System Core assets

Library System canapility Layer

Services MemberType BookType

.o/\.o.

Ordinary Privileged
COTe Claim Ma?gazine Journal

Service o

\ Technical book

) \ Legend
Core service Claim

component processing O Optional feature

—— Composed-of

Cole Service Claim java Implemente-by

Java Implementatipn
Implementation

I mplementation layer

Figure 2. Library system feature model

Example: The test cases for the borrow operation are
implemented in BorrowTests class. We consider fahg test
case, in pseudo code, for book unavailable scenario

class BorrowTests{

The various core assets for Library system can be..........

categorized into — primary assets (feature moeéegllirements,
class diagrams), components (code implementatiaoh as

core service component, claim processing componées)

harness assets (test cases’ implementations, tdat test
results), various tools used (Tomcat, ASADAL, produ
generation tools), configuration files, etc.

3) Library System Implementation

We use client-server architecture to implement litvery
system with Java (JDK1.5.0), JSP, Aspect] (reléaSe[12]
and Tomcat [13]. These implementation details waffect the
feature representations. A feature will have iteresponding
functionality component represented in implemeatatiayer.
For example, the core services are implementedi®y service
component which is further linked to Java impleraéoh to
specify its source files. The Java implementatieatidre is
further divided into client and server components.

C. Core Asset Composition Technique

The source implementation of library functionalitys been
done in AspectJ with variants of each feature imgleted as
aspects. Aspect] has also been used to implementeth
harness. Since the implementation of functionaditgimilar to
other aspect oriented applications, in this paper ewnly
describe the test harness implementation in detail.

1) Test Harness Composition
The core assets corresponding to test harness
implemented similar to other basic functionalityngqmnents.
The variable part in the test cases is put intoapects which
modifies the behavior of the mandatory test cases.

Function chkPostCondition () {
Check_for_msg “The requested book is not
available in the Library”;
return true if successful, else false;

In the presence of claim, if the requested bodaiwow is
unavailable, it gets reserved for the member. Tivign claim
is selected, the borrow operation behaves diffgremd above
test case needs modification to check for claimectbjThe
required modification to borrow test case, due faing is
achieved using below piece of aspect where method
chkPostCondition is overridden by the below aspect.

around():BorrowTest.chkPostCondition();{
check_for_msg “The requested book is not
available in the Library. The same book is
reserved for you.”
check_for claim_object;
return true if successful, else false;

2) Documents Composition

Various documents are structured with respect aufes
and formatted as per AOP concepts. For examplebdtter
reuse, test case documents are maintained at delatvel for
Core services and optional Claim feature separafBhese
documents will be meaningful only if the Claim fea is
glected. This necessitates their formatting in aatiqular
manner to manage variability which includes spéuifythe
required and related join points, pointcuts andicb/in an
AOP way. A join point from SimpleBorrow.xml, thestecase
document for Core services feature is shown below.

<TestCase id=2> <CheckResult>

<Check id="a"> Check for return message: "The
requested book is not available in the
Library".</Check>

</CheckResult> </TestCase>

The elements TestCase and CheckResult specifyothe j
point. In presence of Claim, the information in ckeesults
needs to be modified as the test case behavioohadaged.
Additional checks for claim message and claim dbjge
added using following advice from BorrowClaim.xml.

<TestCase id="2"> <CheckResult> <After>
<Check id="b">Check for return message: "The
same book is reserved for you"</Check>
<Check id="c">Check For loan object for Titlel
with member 13 and bookcopy of Titlel</Check>
</After> <CheckResult> </Case>

Here, the ‘After’ element specifies the After advito add
the extra checks in the target test case. Theasst mapping is
achieved using common value for “id” attribute. $hthe
information with elements and attribute values #gec the
pointcut. When Claim feature is selected, the XMicaments
composition occurs and the resulting test docunfentthe
above mentioned scenario appears as shown below.

<TestCase id=2> <CheckResult>

<Check id="a">Check for return message: "The
requested book is not available in the
Library."</Check>

<Check id="b">Check for return message: "The
same book is reserved for you"</Check>
<Check id="c">Check For loan object for Titlel
with member 13 and bookcopy of Titlel</Check>
</CheckResult> </TestCase>

Requirements and design documents are
similarly structured and XML weaving is used
for composition.

D. Product Development

As the entire required core assets base is in-place
repository, product development simply becomespitueess
of picking-up and combining the related componews. can
easily develop Library systems with the requireatdees and
release the tested library system to the market.

IV. CONCLUSION

We have demonstrated the feasibility of aligning th
structure of all software development assets witature

models and the use of an aspect composition opdmtterive
a specific artifact corresponding to a specific dud.

Successful application of the proposed approachines) the
documents and code to be structured in a way shatienable
to aspect composition. In particular requirememd design
documents should be structured as a tree withedneeb being
simple elements.

We believe the ideas presented can be extendearder]|
projects.

ACKNOWLEDGEMENT

We sincerely thank Suparna Soman for contributing

through multiple reviews to make this paper better.

REFERENCES

Clements, P., Northorp, L., “Software Product Linésactices and
Patterns”, 2002

Kwanwoo Lee, Kyo C. Kang, and Jaejoon Lee., “Cotzepnd
Guidelines for Feature Modelling for Product Lineoft®are
Engineering, Software Reuse: Method, TechniquesTads”, ICSR-7,
April 2002

Jaejoon Lee, Dirk Muthig, “Feature-oriented varifpimanagement in
product line engineering”, Communications of the M(December
2006/Vol. 49, No. 12.

Kyungseok Kim, Hyejung Kim, Kyo C. Kang, “ASADAL a tool
system for co-development of software and testrenwment based on
product line engineering” ICSE '06

Ramnivas Laddad, “Aspectd in Action:
programming”, 2003

Spinczyk, O., Papajewski, H., “Using Feature Modéds Product
Derivation”, SPLC 2006

Mazen Saleh, Hassan Gomaa, “Separation of Condarroftware
Product Line Engineering”, ICSE 2005

Andreas Hein, John MacGregor, Steffen Thiel, “Coufing Software
Product Line Features” ECOOP 2001

Kwanwoo Lee, Kyo C. Kang, Minseong Kim, “Combinirkgature-

Oriented Analysis and Aspect-Oriented ProgramminrgFroduct Line

Asset Development”, SPLC 2006

Alain Forget, Dave Arnold, Sonia Chiasson “ CASE:Fkature

modeling support in an OO Case tool”, OOPSLA 2007

Thomas Leich, Sven Apel, Laura Marnitz, Gunter &adKkool support

for feature-oriented software development: feafEelan Eclipse-based
approach”, OOPSLA 2005

Aspect] (release 1.5), available at
http://www.eclipse.org/aspectj/index.php

[13] Apache Tomcat URL as on March 09, 20k@p://tomcat.apache.org/

(1]

(3]

(4]

Practical aspeiented

(20]

(11]

[12] as on March 2010,

