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Abstract. Boundary value testing in the white-box setting tests relational ex-
pressions with boundary values. These relational expressions are often a part of
larger conditional expressions or decisions. It is therefore important, for effec-
tive testing that the outcome of a relational expression independently influences
the outcome of the expression or decision in which it is embedded. Extending
MC/DC to boundary value testing was proposed in the literature as a technique
to achieve this independence. Based on this idea, in this paper we formally define
a new coverage criterion - masking boundary value coverage (MBVC). MBVC
is an adaptation of masking of conditions to boundary value testing. Mutation
based analysis is used to show that test data satisfying MBVC is more effective
in detecting relational mutants than test data satisfying BVC.
In this paper, we give a formal argument justifying why test data for MBVC is
more effective compared to that for BVC in detecting relational mutants. We per-
formed an experiment to evaluate effectiveness and efficiency of MBVC test data
relative to that for BVC, in detecting relational mutants. Firstly, mutation ade-
quacy of the test set for MBVC was higher than that for BVC in 56% of cases,
and never lower. Secondly, the test data for MBVC killed 80.7% of the total
number of mutants generated, whereas the test data for BVC killed only 70.3%
of them. A further refined analysis revealed that some mutants are such that they
cannot be killed. We selected a small set of mutants randomly to get an estimate
of percentage of such mutants. Then the extrapolated mutation adequacies were
92.75% and 80.8% respectively. We summarize the effect of masking on effi-
ciency. Details of the experiment, tools developed for automation and analysis of
the results are also provided in this paper.

1 Introduction

Bugs in software can be very expensive and can result in loss of life in the case of
safety-critical software, product recalls in the case of embedded software and loss to
business in other cases. Ensuring that a software application is bug-free is very difficult.
Formal specification and verification of the entire software of such systems could be one
way of demonstrating that an application is bug-free. However formal specification of
the complete software is often unavailable, and in many cases not derivable. Moreover,
when the program is complex, formally showing its correctness is often intractable.



Software testing serves as a practical and economic alternative to detect bugs in
software. Testing methods have been extensively studied in the literature [13]. Testing
typically assesses the end-to-end quality of a software by exercising the software on a
representative set of test set to check if it meets the specified requirements. However,
it is impossible to check program performance on all possible input data. An ideal test
set should be large enough to effectively exercise most of the program executions, yet
small enough so that the tester can comfortably run the program on it and compare the
actual outputs with the expected outputs.

Generating effective test data efficiently is a challenging task. Test generation is usu-
ally done with respect to some coverage criterion. The coverage could be either func-
tional coverage such as boundary value analysis (BVA) or structural coverage of the
code. There are various types of structural coverage criteria [9] such as statement, con-
dition, decision, condition/decision, modified condition/decision coverage (MC/DC),
multiple condition coverage (MCC). Ensuring that a test set satisfies a coverage crite-
rion is an indirect measure of its effectiveness [10].

Boundary value analysis is a functional testing technique in which tests include
boundary values of relational expressions. A test set covers the boundary values for
a relational expression e relop c, where c is a constant if e evaluates to c, c+1
and c-1 for some test in the set. A test set is said to achieve boundary value coverage
(BVC) for a program if it covers every boundary value of every relational expression.
BVC is useful for uncovering bugs in relational conditions where either an incorrect
operator is used or there is an off-by-one error.

1. int inp1, inp2, op;
2. void func()
3. {
4. if( ( inp1 > 10 ) && inp2 )
5. op = 1;
6. else
7. op = 0;
8. }

Fig. 1. Running Example

Relational expressions in a program often occur as part of a larger conditional ex-
pression or decision. In such cases a test case that covers a boundary value of the ex-
pression should ensure that the expression has an independent effect on the outcome of
the larger conditional expression or decision. Masking of conditions, as introduced in
the context of masking MC/DC [9], can be applied to achieve this independent effect.
A condition c in a decision d is said to be masked if the values of the other conditions
in d are such that changing the value of c will have no impact on the result of d. The
idea of extending MC/DC to relational testing was proposed in [4]. In this paper we
formalize this idea by defining a new coverage criterion called masking boundary value



coverage (MBVC) that extends boundary value coverage with masking. In MBVC each
test set that covers a relational expression for boundary values also ensures that the val-
ues of other conditions in the decision are such that the relational expression of interest
is the one that influences the outcome of the decision. For example, consider the func-
tion func given in Figure 1. The relational condition of interest is (inp1 > 10) in
line number 4. The difference between the two test sets for BVC and MBVC will be
in the value of inp2. The test set for MBVC will ensure that the value of inp2 is
non-zero so that the relational expression has an independent effect, whereas the test
set for BVC could have any value for inp2 including zero.

The paper presents a more rigorous comparison of the effectiveness of test sets
generated for BVC and MBVC using mutation analysis [2, 4, 7, 11]. We do this using a
mutation operator that introduces off-by-one errors and relational operator errors in the
code. We compare the two sets by their effectiveness in detecting erroneous versions,
and how efficiently they can be generated. A formal argument is presented to show that
where MBVC test data for a boundary value cannot be generated, the corresponding
mutants cannot be killed by the BVC test data. Furthermore, when MBVC test data
for a boundary value can be generated it ensures that the intermediate states in the
corresponding mutants are different from that of the original, which is not necessarily
true with BVC test data. It is still theoretically possible that test data for BVC would
kill a mutant, but test data for MBVC would fail to kill the same mutant. However,
this is not a side-effect of using masking, but rather an incidental possibility. For our
experiments we chose a random set of 74 functions (which we refer to as representative
set) from an embedded automotive application. Since we used a restricted mutation
operator we could do an exhaustive mutation analysis as opposed to selecting a set
of mutants randomly. This removes the repeatability requirement from our method of
analysis.

This paper. . .

– formally defines boundary value coverage,
– introduces masking boundary value coverage,
– describes a white-box method to generate at unit level, test data satisfying MBVC,
– analyses the effectiveness and efficiency of masking in detecting relational mutants,
– describes the experimental setup and the tools used to perform the experiment, and
– presents the findings of the experiment along with a detailed analysis.

Related Work: Boundaries are common locations for errors that result in software
faults and hence they need to be exercised by the test set. There have been studies com-
paring BVA with equivalence partitioning [15], and it is widely believed that BVA is
very effective and necessary. Traditionally BVA is applied to the input specification to
detect bugs in specification of input ranges. Automatic white-box generation of test data
satisfying boundary value coverage (with or without masking) has never been attempted
before. Masking of conditions has been used as a mechanism to achieve MC/DC cov-
erage [1, 3], however, masking by itself is useful in generating more effective test data.
Extending MC/DC to relational testing with boundary values was proposed in [4]. How-
ever, neither formal nor experimental analysis of effectiveness of masking in detecting
was done as part of the paper. There are numerous works which use mutation analysis to
experimentally compare the effectiveness and efficiency of various testing techniques.



See [2, 11, 7] for instance. The closest work to ours among these is that of [7]. However,
our approach differs from these works in two ways. Firstly, we have not come across a
mutation based comparision of coverage criteria like ours where the test data satisfying
both the criteria are exhaustively generated using a white-box technique. This is differ-
ent from more prevalent techniques of black-box generation where test data is generated
randomly until a satisfactory level of required coverage is achieved. Secondly, we use a
specific mutation operator which simulates only relational bugs. This is because we did
not have access to appropriate mutation analysis tools at the point of conducting these
experiments, in order to consider a more comprehensive set of mutation operators [16].
This reduces the total number of possible mutants, and enables us to give a formal ar-
gument why test set satisfying MBVC is more effective in detecting relational mutants.
On the flip-side, this might not give an accurate comparision with respect to detecting
mutants in general. However, we believe that MBVC test data would still turn out to be
relatively more effective than BVC test data, if the experiments were repeated with a
comprehensive set of mutation operators.

The primary contributions of our current work are the following. (1) We describe a
white-box technique to generate test sets for both boundary value coverage and masking
boundary value coverage. (2) We give a case wise analysis of scenarios wherein test data
for MBVC kills more mutants than that for BVC. We also show a purely theoretical and
incidental scenario where the vice-versa holds. (3) Our detailed experimental analysis
demonstrated that MBVC test set is more effective in detecting relational mutants.

2 Masking Boundary Value Coverage

In this section we formally define boundary value coverage and masking boundary value
coverage. We use the example function func in Figure 1 to illustrate the basic ideas.
The input variables for func are inp1 and inp2, whereas op is the output variable.

2.1 Boundary Value Coverage

A relational condition in the programming language C is an expression using a relational
operator (==, ! =, <, >, <=, >=) to compare two entities. To test whether a relational
condition is coded correctly, the recommended approach is to generate test data which
exercise its boundary situations. The hypothesis is that boundary test cases find (1) off-
by-one errors and (2) incorrect operator errors. An off-by-one error is an instance where
one of the operands is either one less or one more than the intended. Any instance where
the intended relational operator was replaced by another operator, is referred to as an
incorrect operator error. A relational bug is the presence of either an off-by-one error or
an incorrect operator error. Relational testing is testing intended to find relational bugs.

Consider the condition (inp1 > 10) in line 4 of the function given in example
code shown in Figure 1. The condition has an off-by-one error if the constant in the
comparison should have been 9 or 11. To detect this bug, test set should be generated
such that inp1 takes the values 10 and 11, respectively. Similarly, for the instances
of incorrect operator errors to be found, test set should be generated such that inp1



takes the values 9 and 10. In other words, it is necessary to generate test set with inp1
taking values 9, 10 and 11 to detect all relational bugs.

Let r be a relational condition of the form e1 ∼ e2 at program point p in a function
f(i1 . . . , in) where,

– ∼ is a relational operator and
– e1 and e2 are arbitrary integral expressions
– i1, . . . , in are inputs to f

Definition 1 (BVC). A test set TS satisfies BVC for r iff there exist three test vectors
t1, t2, t3 ∈ TS such that e1 evaluates to e2 − 1, e2 and e2 + 1 at p for t1, t2 and t3
respectively. Each ti is a tuple of values (v1 . . . vn) for the input variables i1 . . . in.

A test set that satisfies BVC for each relational condition in a function is said to provide
boundary value coverage for that function. This definition can be similarly extended for
a program.

It is noteworthy that the boundary value test set would not be sufficient to detect
instances where both kinds of errors can occur simultaneously. For instance, the con-
ditions (inp1 > 10) and (inp1 == 11), have uniform truth value for the three
test set entries described above.

2.2 Masking Boundary Value Coverage

When a relational expression occurs as part of a larger conditional expression, BVC
may not be sufficient to detect relational bugs. To address this problem we introduce
masking boundary value coverage, which adopts the idea of masking from masking
MC/DC to BVC. Let d be a decision with several conditions in it and let r be one
condition in it. If the test set generated is such that the value of r does not have an
independent effect over the outcome of d, then the effect of r is not seen on the output
either. To ensure this independent effect, other conditions in d should be masked while
generating test set for r.

Let r = e1 ∼ e2 be an atomic relational condition in a decision d at program point
p in a function f(i1 . . . in). Let dr′

represent the decision generated by replacing the
condition r by r′, and let dt represent the truth value of d at program point p with the
test vector t.

Definition 2 (MBVC). A test set TS satisfies MBVC for r iff there exist three test
vectors t1, t2, t3 ∈ TS,

1. e1 evaluates to e2−1, e2 and e2 +1 respectively at p, for t1, t2 and t3 respectively.
Each ti is a tuple of values (v1 . . . vn) for the input variables i1 . . . in and

2. for each ti, dr
ti

= ¬d¬r
ti

.

A test set that satisfies MBVC for each relational condition in a function is said
to provide masking boundary value coverage for that function. This definition can be
similarly extended for a program.

For example, consider the decision in line 4 in the afore-mentioned code. To ensure
BVC for the condition (inp1 > 10), the test set should be such that this condition



is exercised with inp1 taking the values 9, 10 and 11. At the same time, to see the
effect of a coding error on the output, it is necessary that inp2 takes a non-zero value
in this test set.

Claim: Test data generated for MBVC is more effective at detecting relational mu-
tants than that generated for BVC.

3 Mutation Analysis

Observability based techniques such as mutation analysis are most suitable to compare
different coverage criteria. Mutation analysis has been used in the past to determine test
suite adequacy [12, 11] and also to compare test coverage criteria [2, 7].

Mutation [12] is a way of purposely modifying code of a function so as to change
its external behaviour. The modified function is called a mutant. Mutation operators de-
fine the way in which a particular programming construct gets modified. For instance,
a mutation operator can be defined which replaces the operator in a randomly selected
relational condition with a different one. Depending on which program unit is selected
and how it is mutated different mutants of the same function can be created. For in-
stance, if there are n relational operators in a function, there would be 5n possible
mutants of this function with the above mutation operator. Note that we work under the
assumption that a mutant contains exactly one fault [12, 6].

A test set is said to kill a mutant iff there exists a test data entry in the test set such
that

– Both the original program and the mutant terminate on the test data, and
– The output of the mutant is different from the output of the original program when

run with this test data.

Note that a test data entry kills a mutant only if both the following conditions hold
[12].

1. It causes different program states for the mutant and the original program (Weak
Mutation [8]).

2. This difference in state propagates to the output of the program.

The number of mutants killed by a test set is a measure of effectiveness of the test
set. Mutation adequacy ratio represents this effectiveness. Formally -

Definition 3 (Mutation Adequacy Ratio). Let TS represent a test set, and let td rep-
resent a test set input. A mutant f ′ of the program f is said to be killed by a test set TS
iff ∃td ∈ TS such that the output of f and f ′ are not equal when run with the input td.
The mutation adequacy ratio of a test set TS, AMF (TS), is the fraction of mutants
killed by it in a given set of mutants F .

The code shown in Figure 2 gives one possible mutant of our running example. The
constant used in the relational condition is perturbed by one.

BVC and MBVC are both coverage criteria intended to find relational bugs and
hence for our experiments we use a mutation operator that only changes operators and



1. int inp1, inp2, op;
2. void func()
3. {
4. if( ( inp1 > 9 ) && inp2 )
5. op = 1;
6. else
7. op = 0;
8. }

Fig. 2. An Example Mutant

operands in relational expressions. Using such a restricted mutation operator as opposed
to using a comprehensive set of mutation operators helps in greatly reducing the number
of possible mutants to only those that are of direct interest to the coverage criteria under
consideration.

Formally given a relational condition e1 ∼ e2 the mutation operator is defined as

µ(e1 ∼ e2) =

 e1 ∼′ e2 where ∼′ 6=∼ , or
e1 ∼ e′2 where e′2 is either e2 − 1 or

e2 + 1

4 Generation of Test Sets and Mutants

This section describes the tools used for automatic test set generation and mutant gen-
eration.

4.1 Test Set Generation:

We have extended our tool AutoGen [3], to accept additional criteria BVC and MBVC
and automatically generate test set for that criterion thus reducing the time and effort re-
quired to achieve coverage. AutoGen also attempts to generate a non-redundant test set
by continuously performing an analysis of coverage that has already been achieved by
the test set generated at each step and generating additional test data only for uncovered
coverage units.

AutoGen transforms the source program to include statements that generate non-
deterministic values for input variables and adds assert statements, the violation of
which will result in a condition getting covered. To generate test set that violates these
asserts the transformed program is analyzed using C Bounded Model Checker (CBMC)
[5]. Given a C program and an assert statement, CBMC checks if the assert is valid and
generates a trace that violates the assert if it is not valid.

CBMC is a SAT-based bounded model checker for programs written in Ansi-C
and C++. Note that since property checking is undecidable in general, for some cases
CBMC may not terminate or may run out of resources. For our experiments we consid-
ered only code for which CBMC terminates successfully for both BVC and MBVC.



The functions for which CBMC did not terminate were mostly ones with loops.
Generating test data for these functions is necessary to keep our analysis fair. However,
doing this would require techniques which are out of scope of this paper.

Code transformation: Source code transformation is explained using the example
function func of Figure 1. A transformed code is shown in Figure 3. The code has been
modified for generating values for input variables and for inserting assert statements.
Please refer to [3] for detailed description of the transformation. The tool first identifies
the set of input variables needed in the function and then the code is modified such that
input variables take non-deterministic values at the start of execution of the function.
Any function whose name has the prefix “nondet ” is treated as a special function
by CBMC. Let type be the data type of the return value of such a function. CBMC
assumes that the return value of this particular function can be any valid value in the
range defined by type. Hence lines 5 and 6 of the instrumented code in Figure 3
essentially communicate to CBMC that it has to check executions of func, wherein
inp1 and inp2 can both be assigned any two independent values from the data type
int.

The input code is also annotated with assert statements which are of the form
assert(expr), where expr is any expression allowed by the Ansi-C syntax. To
model check this assertion, CBMC tries to check whether there exists an assignment
to the input variables, which causes the execution to satisfy (expr==0) when the
corresponding line is reached. If so, the assertion is said to be violated, and CBMC
reports the same along with a counter-example trace. The required test set is nothing
but the values assigned to the input variables in the trace.

Asserts for BVC: Line 7 in Figure 3 shows the assert annotation. When the
annotated C code in Figure 3 is given as input to CBMC, it produces a counter-example
trace with 11 as the value for inp1 and 0 as the value for inp2.

Asserts for MBVC: The test set for BVC is generated without considering the fact
that inp2 is part of the same decision (see line 4 in Figure 1). As explained in Section

1. int inp1, inp2, op;
2. int nondet int();
3. void func()
4. {
5. inp1 = nondet int();
6. inp2 = nondet int();
7. assert (!((inp1)==(10+1)));
8. if( ( inp1 > 10 ) && inp2 )
9. op = 1;

10. else
11. op = 0;
12. }

Fig. 3. Annotated Code for e1 ∼ e2



2.2, one can use masking of conditions to overcome this limitation. To generate test set
for MBVC, we need to ensure that inp2 takes a non-zero value in the entire test set. In
order to achieve this, we instrument the code further such that the assert statement is
guarded by an appropriate if statement. The condition corresponding to this if state-
ment is such that when the test set is generated, the effect of other conditions is masked.
In case of our running example, line 7 in Figure 3, should be replaced by the following
two lines.

if(inp2)
. assert (!((inp1)==(10+1)));

When the annotated C code with above mentioned modification is given as input to
CBMC, it produces a counter-example trace with 11 as the value for inp1 and 1 as
the value for inp2.

4.2 Mutant Generation:

To generate mutants we have developed a tool that implements the mutation operator
µ. The tool takes C source code as input and the mutant is generated by applying the
mutation operator µ to each relational condition in the function. The tool also generates
the main function which executes the mutated function on a given test set, and records
the values of the output variables after each invocation.

In general, the number of possible mutants of a function can be quite large. How-
ever, we take the do fewer approach suggested in [12], by restricting to a particular
mutation operator. The number of possible mutants of a function with n relational op-
erators is only 7n using our mutation operator. Hence we generate the mutants of each
function exhaustively for our analysis. It is noteworthy that the mutation operator emu-
lates the kind of erroneous functions intended to be detected by the test sets generated
for both BVC and MBVC.

4.3 Test Sets

The original code (Figure 1) of the actual function and the mutant code (Figure 2) is
executed with the generated test set. Table 1 (on the left) shows the test set generated
for BVC and it also shows the output of actual function and the mutant code. In this
case it is an accident that our test data generator generated 0 for inp2.

Table 1 (on the right) shows the test set generated for MBVC and it also shows the
output of actual function and the mutant code. It is easy to see that the mutant of Figure
2 gets killed by test set for MBVC but not by test set for BVC.

5 Formal Analysis of the Effect of Masking

This section presents a formal analysis of how masking of conditions helps in achieving
additional effectiveness in detecting relational mutants. We consider an arbitrary mutant
and do a case-wise analysis on the basis of generatability of each type of test data.



Let f be the function of interest, and let f ′ be one of its mutants. Let r be the
relational condition e1 ∼ e2 in decision d, which was changed by µ and let r′ represent
the variant of r and d′ the modified decision. Let b represent a boundary value which
differentiates r from r′, and let τb and tb respectively represent any MBVC and BVC
test data for coverage of b.

Case 1 Neither τb nor tb exist. The mutant cannot be detected by either of the test sets.

Case 2 τb exists, but not tb. This contradicts the definition of MBVC, as any test data
entry that satisfies MBVC, by definition satisfies BVC.

Case 3 tb exists, but not τb. If tb kills the mutant then since f and f ′ differ only in r,
r = ¬r′ and d = ¬d′ must be true. Then tb also satisfies MBVC for r which contradicts
our assumption. Hence tb cannot kill the mutant.

Case 4 Both τb and tb exist.

(a) tb kills f ′ and τb does not. We give an example of such a function and a mutant
in Figure 4 to argue that this is a valid possibility. The commented code on line 6
represents one possible application of µ to ( inp1 > 10 ). For this example
b = 10. Table 2 shows two possible test data entries for this boundary value, one
satisfying MBVC and the other satisfying BVC. This shows one possible instance
where the mutant is killed by tb but not by τb. Note that the same example can be
used to show how τb kills a mutant that tb does not.

(b) All the other sub cases do not contradict our claim and hence we do not analyze
them.

All the cases are in favour of MBVC, except Case 4(a). Note that Case 4(a) is
an instance where the test data for MBVC could not ensure the second condition for
mutant to be detected (see Section 3). However, since inp2 is a condition independent
of the mutated condition, it is highly improbable that inp2 has different values in the
two test data entries, especially when test data is generated automatically using a fixed
algorithm. Furthermore, if the value of inp2 was same in the two test data entries,

inp1 inp2 Function Output Mutant Output
9 0 0 0

10 0 0 0
11 0 0 0

.

.

inp1 inp2 Function Output Mutant Output
9 1 0 0

10 1 0 1
11 1 1 1

Table 1. Test Data for BVC and MBVC



1. int inp1, inp2, op;
2. void func()
3. {
4. int local;
5. if( inp1 > 10 )
6. //if( inp1 > 9 )
7. local = 1;
8. else
9. local = 0;

10. if( local || inp2 )
11. op = 1;
12. else
13. op = 0;
14. }

Fig. 4. Counter-Example

Coverage inp1 inp2 Function Output Mutant Output
MBVC 10 1 1 1

BVC 10 0 0 1

Table 2. Test Data



it cannot happen that BVC test data detects the mutant but MBVC test data does not.
This argument is supported by our experimental data which contains no occurrences of
scenarios similar to Case 4(a).

6 Experiment

To validate our theory an experiment based on mutation analysis was conducted. In
this section we describe our experimental setup, and then present the empirical data
supporting our claim. Section 6.2 gives the figures obtained in our experiments.

6.1 The Setup

To make our experiment more realistic we chose some modules of an embedded ap-
plication. The application is a C program intended to control the battery in a car. The
application has around 22 modules of which we randomly chose 12 for our analysis.
Among the functions in these modules the number of functions which had logical com-
binations of relational conditions, and were amenable to our analysis was 74. The total
number of lines of code for these 74 functions is 3646.

Let F represent the set of 74 functions we analyzed. The following steps were
executed on each function f in F .

1. Identify the set of output variables of f .
2. Generate test sets for f satisfying BVC and MBVC.
3. Generate a random subset of all possible mutants of f .
4. Compile and execute each of the mutants on both the test sets, and record indepen-

dently the number of mutants killed by each of them. In our setup, since the test sets
are executed on the same set of mutants, we can consider the number of mutants
killed as a direct measure of their mutation adequacy ratios.

6.2 Empirical Data

Table 3 summarizes the empirical data collected from our mutation analysis. A descrip-
tion of the contents of various rows in the table is as follows:

- The first row gives the total number of functions in our representative set. Note that
only functions involving decisions with logical combination of relational conditions
were considered.

- The second row gives the number of functions for which MBVC killed more mu-
tants than BVC.

- The third row gives the number of functions for which BVC killed more mutants.
- The fourth row gives the number of functions for which both BVC and MBVC

killed the same number of mutants.
- The fifth row gives the total number of mutants generated using our mutation oper-

ator.
- The sixth row gives the number of mutants killed by test data satisfying MBVC.
- The seventh row gives the number of mutants killed by test data satisfying BVC.



The rest of the rows are explained below.
We did a further (manual) investigation of why 893 of these mutants were not killed

by any of the generated test data. We had the time to analyze 153 of them, and it was
revealed that 103 of these were not killed because the test data that can kill these
mutants cannot be generated. For instance, the actual relational condition in a function
was of the form b==1, whereas that in the mutant was b>=1. The boundary value that
can kill this mutant is 2. But the variable b was a bit field of size 1. Extrapolating these
numbers the total number of mutants that can be killed comes down to 4026. And hence
the mutation adequacies of test data satisfying MBVC and BVC are 92.75% and 80.8%
respectively. The rows 8,9 and 10 in Table 3 quote these numbers.

Propagation The reason for the other mutants not getting killed by test set satisfying
MBVC was that the change in state induced by the test data did not propagate to the
output. This was because of masking by a condition in an independent decision. For
instance consider the code given in Figure 5. The commented line 6 is a mutated version
of the code in line 6. The boundary value for inp1 that can detect this mutant is 11.
However, if the test values that were generated for inp1, inp2 and inp3 were 11, 1
and 1, the output of the mutated function does not differ from that of the original. Note
that the change in state is observed at line 5. But this fails to propagate to the output due
to the input variable inp3 taking the value 1. It is noteworthy that the condition inp3
is part of an entirely different decision.

Efficiency Using masking for relational testing comes with the following added costs.
For the functions wherein the conditions use logical operators,

– the size of the test set for MBVC was 28.65% more than that for BVC. This happens
mostly when there are more than one relational expression in a decision. In such
cases the probability of a test vector generated for covering one component of a
decision covering some other component also goes down in presence of masking.
Hence more test vectors are required to provide MBVC coverage.

Table 3. Empirical Data from Mutation Analysis

No. Category Number Percentage
1 Representative Set 74 -NA-
2 AM(TSM ) > AM(TS) 42 56
3 AM(TSM ) < AM(TS) 0 0
4 AM(TSM ) = AM(TS) 32 44
5 Total Mutants 4627 -NA-
6 Mutants killed by MBVC test data 3734 80.7
7 Mutants killed by BVC test data 3253 70.3
8 Number of Detectable Mutants (Extrapolated) 4026 -NA-
9 Mutants killed by MBVC test data 3734 92.75

10 Mutants killed by BVC test data 3253 80.8



– the time taken to generate the test set for MBVC was 9.38% more than that taken to
generate for BVC. The average time taken for generating test data for MBVC was
95.19 seconds per function, as opposed to 86.26 seconds per function for BVC.
This was expected because the constraint that is generated by the model checker
will be stronger when masking is used. Computing a satisfiable assignment for this
constraint is expected to be relatively expensive.

However, these costs should be acceptable as the probability of detecting a bug goes
up considerably and although the time taken for MBVC is more, the entire generation
is automatic.

In the industrial code we tried to target, there were functions which could not be an-
alyzed using our approach. For example, there were instances where the model checker
ran out of resources. We completely excluded data corresponding to any such function.

7 Conclusions and Discussions

Mutation analysis validated the claim that MBVC is more effective than simple BVC
in detecting mutants. We restricted our attention to the test set generated for BVC of
relational conditions occurring in the code. Masking is likely to be beneficial in other
contexts too such as the data flow coverage criteria p-use [14].

Our experiments, modulo the limitations (see Section 7.1), suggest that using mask-
ing when generating boundary value test data is more effective and at the same time
insignificantly inefficient. Following are some of our observations.

– Test data for MBVC is strictly more effective in 56% of the cases.
– The average mutation adequacies of MBVC test data and BVC test data are 80.7

and 70.3 respectively. A further investigation revealed that there were mutants

1. int inp1, inp2, op;
2. void func()
3. {
4. int local;
5. if( inp1 > 10 && inp2)
6. //if( inp1 > 11 && inp2)
7. local = 1;
8. else
9. local = 0;

10. if( local || inp3 )
11. op = 1;
12. else
13. op = 0;
14. }

Fig. 5. Hindrance in Propagation



that could not be killed, because test data for killing these cannot be generated.
Discounting these, with some extrapolation, the mutation adequacies turned out to
be 92.75 and 80.8 respectively.

– The average size of the test data generated increased by 28.65% and the average
time taken to generate the test data increased by 9.38%. Given the increase in
chances of detecting a bug, these added prices are acceptable. Moreover, the test
data generation was automated in the form of a tool and hence required insignifi-
cant manual effort.

– The defects that could not be detected by MBVC test data were diagnosed to be
those in which the change in state induced by the test data was hindered from
propagating to the output by an independent condition occurring in a decision other
than the one of interest.

We would like to point out that when none of the conditions in the code is such
that it is a logical combination of atomic conditions, masking has neither positive nor
adverse effects.

7.1 Limitations of our Approach

– One prominent limitation of our approach is that we consider only those functions
for which the model checker terminated. A more fair analysis would require signif-
icant efforts towards loop abstraction and is out of scope of this paper.

– Another factor which could have improved the credibility of our analysis is keeping
the size of the test sets being compared same. This could be achieved by padding
more test data to the BVC test set to make it as big as the test set for MBVC.

7.2 Future Directions

– Other coverage criteria such as p-use can be extended with masking of conditions.
We intend to do more rigorous experimental study of how effective masking would
be in those cases.

– Using specific mutation operators to assess the effectiveness of a test suite in finding
the bugs it is intended to find, is an interesting idea by itself. When the category of
bugs to be detected is clearly defined, this approach is a useful alternative to using
a comprehensive set of mutation operators. A systematic study of how effective our
alternative approach is in the spirit of [16] needs to be done.

– We would like to point out that the test data generation is at unit level and does not
take procedure preconditions into account.
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