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Summary

Postprocessing of Static Analysis Alarms

Static analysis tools help to automatically detect common programming errors like division
by zero and array index out of bounds, as well as help to certify absence of such errors in safety-
critical systems. When these tools cannot determine whether a point of interest is an error,
they report an alarm, i.e., a warning message notifying the tool user about a potential error at
that point. Due to several reasons, such as the abstractions the tools use and the trade-off they
make between precision and scalability of the analysis, they generate a large number of alarms.
The user is required to manually inspect those alarms and partition them into errors and false
positives. The large number of false positives and the effort required to manually inspect them
have been reported as two primary concerns associated with limited adoption of static analysis
tools in practice.

While these concerns can be addressed by improving precision of the analysis, the improve-
ment achieved in this way is limited due to the inherent limitations of static analysis. An altern-
ative, explored since last decade and half, is postprocessing of alarms: processing alarms after
they have been generated. The postprocessing goals include reducing the number of alarms and
effort required for their manual inspection. Considering the benefits offered by postprocessing of
alarms, a plentitude of techniques have been proposed. However, percentage of alarms remaining
after applying those techniques is still large, ranging between 40% to 80%. Moreover, even after
simplification of manual inspection of alarms by the techniques, the alarms require considerable
effort to inspect them manually (ranging between three to eight minutes per alarm). Therefore,
in this thesis we focus on improving postprocessing of alarms.

As a starting point for our work we conduct a comprehensive review of techniques that have
been proposed for postprocessing alarms. Indeed, while multiple postprocessing techniques have
been proposed, such a review was missing making it harder to understand relative strengths
and weakness of different techniques or to identify promising directions for future research.
We identify 130 primary studies that propose techniques to postprocess alarms, and categorize
the approaches implemented by them into six main categories. We then select and study the
techniques and approaches that are useful when static analysis tools are used for proving absence
of errors. Based on this study, we identify limitations of the existing techniques. We aim to
improve alarms postprocessing by overcoming those limitations.

Clustering of alarms, one of the identified six categories of the approaches, is commonly
used to reduce number of alarms. We find that state-of-the-art clustering techniques fail to group
similar alarms appearing in commonly occurring scenarios. Therefore, we choose to improve
clustering of alarms, and propose repositioning of alarms as means to overcome the limitation



iv Summary

of the clustering techniques. Repositioning reduces the number of alarms by moving groups of
similar alarms along the control flow to a program point where they can be replaced by a single
alarm. Our empirical evaluation indicates that the alarms repositioning technique reduces the
number of alarms by up to 20% over state-of-the-art alarms clustering techniques with median
reduction of 7.25%.

While we expected repositioning to reduce the number of alarms significantly, the median
reduction is limited. This is why we take a closer look at reasons for the limited reduction
in alarms by our technique. We find that a high percentage of similar alarms are not grouped
together due to the conservative assumption related to conditional statements. To improve the
repositioning technique and thus further reduce the number of alarms, we introduce a notion of
non-impacting control dependencies (NCDs) and propose a new variant of repositioning based
on NCDs. We evaluate the NCDs-based repositioning on 16 open-source and 16 closed-source
systems. The evaluation indicates that, compared to the previous repositioning technique, the
NCDs-based repositioning reduces the number of alarms on an average by up to 36.09%, with a
median reduction of 10.48%.

Then we turned our attention to challenges incurred in static analysis of large systems. A
popular way of scaling up the analysis consists in splitting an application code into multiple
partitions. Each code partition is then analyzed separately, conservatively assuming all values
being possible for variables shared by multiple partitions. This approach, however, increases
the number of alarms because multiple alarms can get generated for the same point of interest
when it belongs to multiple partitions (common-POI alarms). We find that postprocessing and
manual inspection of common-POI alarms separately in each of their associated partitions result
in redundancy. To reduce the redundancy problem in manual inspection, we group common-POI
alarms together and propose a method to manually inspect them based on an automatically in-
ferred condition for each group. We then target reducing redundancy in automated false positives
elimination (AFPE) applied to common-POI alarms and reduce the time taken by AFPE. To this
end, we reuse AFPE results across partitions. Our empirical evaluation indicates that (1) the
proposed method to group and inspect common-POI alarms reduces manual inspection effort by
60%; and (2) the reuse of AFPE results across partitions reduces AFPE time by up to 56%, with
median reduction of 12.15%.

Last, we aim to improve postprocessing of delta alarms that are generated by version-aware
static analysis tools on evolving software. The improvement is based on our finding that post-
processing and reporting of delta alarms can be further improved by taking into account the code
changes between the versions. However, none of the existing VSATs postprocesses delta alarms
based on the code changes. In our proposed postprocessing, we classify delta alarms into six
classes and rank them by assigning different priorities to these classes. The ranking of alarms
can help to suppress the alarms that are ranked lower when resources to inspect all the alarms
are limited. Next, we postprocess the ranked delta alarms for AFPE. We use the code changes
to determine situations where AFPE results from the previous version can be reused. The reuse
of AFPE results helps to improve efficiency of AFPE applied to delta alarms. Our empirical
evaluation indicates that the proposed classification and ranking of delta alarms help to suppress
61% of delta alarms. The reuse of AFPE results across the versions reduces the AFPE time by
64.5%.

The presented techniques in this thesis are tool-agnostic and they can be applied in conjunc-
tion with other existing alarms postprocessing techniques to complement each other. We believe
that the combinations will provide more benefits as compared to the benefits obtained by apply-
ing them individually. Investigating different combinations to obtain optimal results should be
subject of further studies.
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Chapter 1

Introduction

In this chapter, we first introduce static analysis and alarms generated by static analysis tools
(Section 1.1). We then describe the problem of large number of alarms and their postprocessing
as an approach to address the problem (Section 1.2). Next, we briefly discuss limitations of
techniques proposed for postprocessing of alarms, that we identify and address in this thesis. In
order to overcome these limitations, we formulate a series of research questions (Section 1.3).
Lastly, we provide outline of this thesis (Section 1.4).

1.1 Background
Software systems are playing a crucial role in our life. Ensuring that these systems are free of
defects is of utmost importance for uninterrupted use of the systems or even for human lives
in case the systems are safety-critical1. Software testing is commonly used to assess whether
a software system or its components conform to their requirements. Despite its common use,
software testing can be used to show the presence of bugs, but never to show their absence [53].

This well-recognized limitation of testing led to the emergence of alternative techniques
such as static analysis, model checking, and symbolic execution, for ensuring system correct-
ness. These techniques, commonly called automated program analysis techniques2, are useful
in the cases where a software system requires proving it to be free of defects of certain types
[24, 52, 57, 112]. For example, these techniques can help to ensure that a safety-critical system
does not crash due to common programming errors like division by zero or dereference of a null
pointer. As another example, the techniques can help to prove absence of common vulnerabilities

1Safety-critical systems are those systems whose failure could result in loss of life, significant property damage, or
damage to the environment [109].

2The terms used for the analysis techniques in scientific literature vary. Some studies (e.g. [229]) consider model
checking and symbolic execution as a part of static analysis, while others (e.g. [57, 60, 153]) consider them to be different.
Throughout this thesis, we consider static analysis to be different from model checking and symbolic execution. By static
analysis, we mean analysis of programs to detect programming errors using techniques such as data flow analysis [100],
abstract interpretation [38], and pattern matching [14].
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Figure 1.1: Working and usage of a typical static analysis tool.

in web applications, by checking whether values accepted from untrusted environment can flow
into security-sensitive operations [170, 203, 204]. We use code proving to refer to such instances
in which ensuring absence of defects of certain types is required. Apart from code proving, the
automated program analysis techniques also help to detect defects early in the software develop-
ment life-cycle [12, 14, 59]. For example, FindBugs [12] is a very popular static analysis tool
used to find bugs in Java programs. We use bug finding to refer to instances in which the analysis
purpose is to find bugs rather than to prove their absence.

Different automated program analysis techniques are known to have different strengths and
limitations [57, 229]. For example, compared to model checking and symbolic execution, static
analysis can scale to very large systems but can be less precise [153, 174, 205].

1.1.1 Static Analysis Tools
A wide range of automated static analysis tools (ASATs)3 have been developed by the research
community and industry. The tools developed vary in numerous aspects such as techniques they
use to analyze the code, types of programming errors they detect, programming languages they
support, and analysis purpose they have (code proving or bug finding). Wikipedia4 lists more
than 100 static analysis tools, such as Astrée [40, 51], Polyspace Code Prover [200], FindBugs,
and ANDROMEDA [203].

3Throughout the thesis, we use static analysis tool(s) and the acronym ASAT(s) interchangeably. We drop the word
automated when we explicitly refer to static analysis tool(s). We considered automated in the acronym to avoid its
conflict with SAT which has other well accepted connotation.

4https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
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Figure 1.1 provides a generalized view of working of an ASAT and workflow associated with
its usage. A typical ASAT takes as input program code to be analyzed and analysis settings that
configure or control the way code is analyzed. We categorize working of ASATs into two parts,
and describe it below in Sections 1.1.1.1 and 1.1.1.2.

1.1.1.1 Identification of Points of Interest (POIs)

We refer to the type of errors that are detected by ASATs as verification properties. Usually
the verification properties are provided as a part of input analysis settings. During analysis
of the code, ASATs first identify expressions in the program where defects corresponding to
the provided verification properties can manifest. We call those expressions points of interest5

(POIs) relevant to the verification properties. The POIs identified by an ASAT vary depending
on whether the ASAT supports bug finding (a bug finding tool) or code proving (a code prov-
ing tool). A bug finding tool generally identifies a subset of POIs that are relevant to a given
verification property. For example, FindBugs identifies POIs for dereference of a null pointer
verification property only if they appear in certain code patterns, such as dereference of a refer-
ence variable is without a null check and there exists another dereference of the same variable
but with a null check. A code proving tool, such as Polyspace Code Prover and Astrée, selects all
the POIs that are relevant to a given verification property. For example, these tools identify every
dereference of a pointer as a POI relevant to dereference of a null pointer verification property.

1.1.1.2 Analysis and Classification of POIs

After identification of POIs corresponding to input verification properties, ASATs analyze the
code using techniques such as data flow analysis [100, 163], abstract interpretation [38], and
difference bound matrix [146]. We call these techniques value analysis techniques, because they
compute values of variables at some or all program points in the program. Using the analysis
results, ASATs primarily intend to classify each POI either as safe or erroneous, depending on
whether the POI violates the property. As determining whether a POI is safe is undecidable in
general [54, 118, 178, 182], in several instances ASATs cannot classify a POI either as safe or
erroneous. In such a case, they conservatively report an alarm for that POI. An alarm reported
by ASATs is a warning message to the user denoting a potential error at its corresponding POI.

Usually this step of analysis and classification of POIs in ASATs is absent if they are based
on pattern-matching [14]: pattern-matching is used for both identification and classification of
POIs. Computation of values of variables by the value analysis techniques can be shallow or
deep depending on the requirement [59, 80]. An analysis that is typically flow- and context-
insensitive is called shallow analysis, whereas an analysis that is flow- and context-sensitive is
called deep analysis [59]. The ASATs that are based on shallow analysis or pattern-matching are
generally called shallow/light-weight analysis tools, whereas the other type of ASATs are called
deep analysis tools [59, 207]. In general, a bug finding (resp. code proving) tool is shallow (resp.
deep) analysis tool. �

Manual Inspection of Alarms As alarms generated by ASATs are warning messages about
potential errors, the user is expected to inspect each of them and decide whether the alarm’s POI
is erroneous. An alarm whose corresponding POI does not indicate an error is commonly called
a false positive. We find that, however, the terms used in literature to refer to alarms that indicate

5Note that the points of interest (POIs) are different from the program points. A program point can have multiple
POIs related to a verification property.
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errors vary, e.g., true positives [179, 210], actionable alarms [77, 185], and true errors [182].
Throughout this thesis, we use the term error to refer to an alarm that is a true positive, i.e., the
one whose POI violates the property.

1.1.2 Static Analysis Alarms
ASATs are known to generate a large number of false alarms [37, 92, 120]. Below we describe a
few prominent reasons for generation of a large number of false alarms by ASATs.

1.1.2.1 Use of Abstractions

The value analysis techniques used by ASATs, mainly deep analysis tools, generally compute
values of all variables in the program and at all program points. Such a computation is memory
and time intensive in presence of large-size arrays, data structures like linked-lists and map-
tables, and recursive chains. Therefore, in these cases the tools use abstractions, i.e., they com-
pute more possible values for variables than the variables can take [56, 182]. When more values
are computed for a variable in a POI than the variable actually can take, it results in imprecision
of the tools: a false positive is most likely to get generated for the POI due to the more values
computed for the variable.

1.1.2.2 Lack of Run-time Context

Since ASATs analyze a program without executing it, in many cases the exact run-time values are
not available due to, e.g., user input or values from external data sources. To address this issue,
ASATs adopt conservative approach, i.e., assume that all values are possible when an input is
accepted from user or values are read from external data sources. The conservatively assumed
values increase the number of alarms generated by ASATs.

1.1.2.3 Trade-off between Precision and Scalability

In general, analysis performed by ASATs, especially by deep analysis tools, is memory and time-
intensive. Hence, the tools generally do not scale on very large systems. In such cases, the tools
might compromise on precision of the analysis to improve scalability. As a result of this trade-
off, more alarms get generated. Generally, this trade-off is resolved by developers of ASATs or
by users of ASATs. For example, Polyspace Code Prover allows the user to select from different
levels of precision which correspond to different degrees of scalability.

As another example, to scale up static analysis on very large systems (ranging in millions
lines of code), a deep analysis ASAT might split an application code into multiple parts (called
code partitioning) [89, 99]. Each code part, called partition, is then analyzed separately under the
conservative assumption that all values are possible for variables shared by multiple partitions.
This conservative assumption affects precision of the analysis. Moreover, multiple alarms also
can get generated for the same POI when the POI belongs to multiple partitions. Thus, although
a code partitioning approach helps ASATs to analyze very large systems, it results in generating
more alarms on the partitioned-code than the number of alarms that would be generated on the
non-partitioned code.
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1.2 Setting the Context

1.2.1 The Problem
Due to the reasons discussed above (Section 1.1.2), generation of alarms by ASATs is certain,
their number can be large, and they require manual inspection to identify errors among them.
The number of alarms generated and percentage of false positives among them vary depending
on precision of the tool. Moreover, manual effort required to inspect alarms varies depending
on several factors such as expertise of the user, verification properties, and tool support used
[54, 150]. To describe the problems associated with alarms, we provide the following findings
from a few studies.

• In general there are 40 alarms for every thousand lines of code [20, 82].

• Studies by Kamperman [98], and Beller et al. [20] report that there can be as many as
50 false positives for every accurately reported alarm (error). Moreover, based on studies
relevant to static analysis alarms, Heckman and Williams [84] report that 35% to 91% of
reported alarms are false positives.

• Manual inspection of alarms is a tedious and time-consuming process [54, 150, 182, 195].
Beller et al. [20] based on their literature survey report that, on average, inspection of an
alarm takes three to eight minutes.

• In addition to the above problems, manual inspection of alarms is also found to be error-
prone [54].

1.2.2 Postprocessing of Alarms
Popularity of ASATs in the industry is found to be varying, mainly based on type of the tools
(code proving or bug finding) and the nature of applications to be analyzed. On one hand, several
studies report that, despite a large number of alarms generated and manual inspection required
for them, ASATs are often used to prove absence of certain types of defects. However the use
is found to be mainly limited to safety-critical and security-critical systems. That is, ASATs are
used when conventional techniques of software testing are very costly or inadequate to detect
those critical defects, or the usage of such tools is mandated by certification agencies [24, 52,
112]. The problem of large number of alarms is still evident during the usage of tools and
addressing it is a challenge. On the other hand, several studies [20, 37, 92, 120] suggest that the
large number of alarms generated and effort required to manually inspect them are two major
concerns during adoption of ASATs in practice. Johnson et al. [92], and Christakis and Christian
[37] report that ASATs are underused in practice. Combining the insights from the two groups
of studies, we conclude that ASATs are not commonly used by developers except for safety- and
security-critical systems.

Therefore, to help users during the use of code proving ASATs and to increase adoption of
bug finding ASATs, the problem of large number of alarms needs to be addressed. The obvious
approach to address this problem is to improve precision of ASATs, and this line of work is being
pursued by researchers [17, 75, 135]. However as discussed earlier (Section 1.1.2), due to several
commonly occurring reasons, reporting of false alarms by ASATs is inevitable. Hence, since
last two decades, postprocessing of alarms—processing the alarms after they are generated—
is being explored as an alternative. The postprocessing goals include reducing the number of
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Figure 1.2: Illustrating postprocessing of alarms generated by static analysis tools.

alarms and effort required for their manual inspection. We use postprocessing of alarms to mean
the following:

1. Automatic processing of alarms to reduce their number prior to reporting them to the user.

2. Enriching alarms with additional information so that effort to manually inspect them gets
reduced.

3. Simplifying manual inspection of alarms by providing assistance and tool support during
the inspection process.

In Figure 1.2 we present a generalized overview of postprocessing of alarms, covering all the
cases listed above.

1.2.3 The Context of Our Work
The author has been working as a researcher in TRDDC, a research wing of Tata Consultancy
Services6, for more than 10 years. He is a member of research group that works towards zero

6https://www.tcs.com/

https://www.tcs.com/
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defects by designing new and scalable techniques for verification and validation of safety-critical
systems. He has been working on improving usability of code proving tools used to detect com-
mon programming errors, primarily on safety-critical systems. Initially, the author was involved
in design and development of a commercial tool, TCS Embedded Code Analyzer (TCS ECA)
[197]. The tool helps analyzing safety-critical systems to detect common programming errors
like division by zero and array index out of bounds, as well as to detect complex concurrency is-
sues in multi-core architectures. The tool uses data flow analysis, semantic analysis, and abstract
interpretation to analyze C and C++ applications. It supports detection of 25 types of defects,
among which 15 are unique, i.e., not supported by any other static analysis tool, such as verific-
ation of implementation of sleep wakeup protocol [158]. The author has contributed to design
and implementation of techniques for detecting defects of those unique types, and techniques for
improving precision of underlying analyses such as value and pointer analyses. Later, to address
the problem of alarms generated by TCS ECA, the author’s focus shifted to postprocessing of
alarms generated by a code proving tool [149, 150, 151, 152, 154]. The research work presented
in this thesis also focuses on postprocessing of alarms.

1.3 Research Questions
Considering the benefits offered by postprocessing of alarms, a plentitude of techniques have
been proposed [58, 84]. However, percentage of alarms remaining after the reduction range
between 40% to 80% [36, 71, 133, 150, 223]. Moreover, even after simplification of manual
inspection of alarms, the alarms require user’s effort to inspect them manually. Therefore, we
investigate how to improve existing postprocessing techniques. Hence, we ask the following
central research question.

RQ: How can we improve postprocessing of static analysis alarms?

In this thesis, we first survey the current state of postprocessing of alarms and identify limita-
tions of the current techniques. We then focus on four of the identified limitations, propose tech-
niques to overcome them, and empirically evaluate the techniques proposed. Figure 1.3 provides
an overview of the limitations identified, corresponding research questions, and the chapters in
which we answer them.

1.3.1 Understanding the Current State of Postprocessing of Alarms
While a plentitude of techniques have been proposed for postprocessing of alarms, their compre-
hensive overview is missing. In absence of such an overview,

• designers/developers and users of static analysis tools might spend considerable effort
while they choose suitable postprocessing techniques from the plentitude of the existing
ones; and

• researchers might be spending a large amount of effort in understanding the current state
of alarms postprocessing, and they might be rediscovering existing approaches or miss
opportunities to explore new directions.

Therefore, as a starting point for our work, we ask the following research question.
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Figure 1.3: Thesis outline depicting the limitations and research questions addressed in the re-
maining chapters.

RQ 1: What approaches have been proposed for postprocessing of alarms?

To understand the current state of alarms postprocessing, we conduct a systematic literature
search by combining keywords-based database search [138] and snowballing [15, 213]. We
identify 130 primary studies that propose technique(s) for postprocessing of alarms, and identify
six categories of approaches from them: clustering, ranking, pruning, automated false positives
elimination (AFPE), combination of static and dynamic analyses, and simplification of manual
inspection.

Recall that the main focus of our work is to improve postprocessing of alarms generated by
a code proving ASAT (Section 1.2.3). Therefore, to identify areas of improvement, we studied
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techniques implementing the approaches that are applicable for those alarms. Following we
describe identified limitations of those techniques.

Our findings include that the approaches identified are complementary and they can be com-
bined together in different ways.

Based on the literature study we identify the following limitations of existing techniques, and
address them in this thesis.

Limitation 1 Clustering of alarms, one of the six categories of approaches that we identify,
is commonly used to reduce the number of alarms. State-of-the-art clustering techniques
[71, 150, 223] reduce the number of alarms by identifying a fewer dominant alarms for a
group of similar/related alarms. We have identified two commonly occurring scenarios in
which the clustering techniques fail to group similar/related alarms.

Limitation 2 In our earlier work [150, 151, 152, 153], we found that analyzing a partitioned-
code results in generation of multiple alarms for the same POI but in the context of multiple
partitions (Section 1.1.2.3). We call such alarms common-POI alarms. Since alarms gen-
erated on a partition are specific to that partition, the alarms are postprocessed partition-
wise. The partition-wise postprocessing of common-POI alarms incurs redundant effort,
e.g, manual inspection of the alarms or processing them using AFPE techniques results
in analyzing the same code multiple times. However, none of the existing postprocessing
techniques are explicitly directed to postprocess alarms generated on partitioned-code: the
techniques do not consider the nature of the partitioned-code7.

Limitation 3 Automated false positives elimination (AFPE), one of the six approaches that
we identify, has gained popularity recently [34, 35, 152, 153, 205]. AFPE eliminates false
positives by processing alarms using more precise techniques such as model checking
and symbolic execution. The processing consists in generating assertions corresponding
to alarms and then verifying the assertions using the precise techniques. We limit the
discussion scope to model checking-based AFPE.

Existing model checking-based AFPE techniques require verifying a large number of as-
sertions generated corresponding to the alarms [34, 152]. Moreover, the context expan-
sion approach used to scale AFPE on very large systems increases the number of model
checking calls made for a single assertion or a group of related assertions [34, 153]. There-
fore, AFPE techniques suffer from poor performance: the evaluations of AFPE techniques
[34, 152, 153] indicate that processing a group of similar/related assertions, on an average,
involves making five calls to a model checker and it takes around four minutes. Therefore,
poor performance of AFPE techniques is a major concern when they are applied to alarms
generated on very large systems.

Limitation 4 Although software systems operating in the real world or modeling it, are evolving
in nature, only a few techniques ([36, 133, 191, 207]) are proposed to postprocess alarms
by considering the evolving nature of systems. Typically the techniques suppress alarms
that repeat across two successive versions but are not impacted by code changes between
the two versions, and report the remaining alarms (called delta alarms). State-of-the-art
postprocessing techniques take code changes into account only for computation of delta
alarms but not for postprocessing those alarms further.

7The only prior study that addressed grouping of alarms across partitions is our earlier publication [148] included in
this thesis as Chapter 5.
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1.3.2 Improving Clustering of Alarms
In our study to identify limitations of existing postprocessing techniques (Section 1.3.1), we ob-
serve that improving clustering of alarms can be expected to improve techniques implementing
other postprocessing approaches as well. Moreover, alarms clustering techniques are generally
less time-consuming as compared to the techniques implementing the other postprocessing ap-
proaches. Therefore, we choose to improve alarms clustering techniques. Based on our observed
limitation of existing alarms clustering techniques (Limitation 1), we ask the following research
question.

RQ 2: How can we automatically group similar alarms that state-of-the-art alarms
clustering techniques fail to group?

To overcome the limitation of existing clustering techniques, motivated by the work of Gehrke
et al. [71] we propose repositioning of alarms. Repositioning reduces the number of alarms by
moving groups of related alarms along the control flow to a program point where they can be
replaced by a fewer ones. We evaluate proposed alarms repositioning on 16 open-source and
four closed-source systems and observe that it reduces the number of alarms by up to 20% over
state-of-the-art clustering techniques with median reduction of 7.25%.

While we expected our alarms repositioning to reduce the number of alarms significantly, the
median reduction observed during the experimental evaluation is limited. This is why we take
a closer look at reasons for the limited reduction in alarms. This led to the following research
question.

RQ 3: How can we improve the reduction in the number of alarms obtained by reposi-
tioning them?

To answer this question, we analyzed the cases where repositioning fails to group similar
alarms which ideally should be grouped together. We find that, on average, 50% of the alarms
resulting after their repositioning are similar, and 74% of the similar alarms are not grouped to-
gether due to a conservative assumption made about their immediate controlling conditions8. To
further reduce the number of alarms, we introduce a notion of non-impacting control depend-
encies (NCDs) and propose a new variant of repositioning based on NCDs. We call the new
variant NCD-based repositioning. We evaluate NCD-based repositioning on 16 open-source and
16 closed-source systems. The evaluation indicates that, compared to the original repositioning,
NCD-based repositioning reduces the number of alarms by up to 36.09%, with median reduction
being 10.48%.

1.3.3 Improving Postprocessing of Alarms Generated on Partitioned-code
Recall that presence of common-POI alarms increases the number of alarms generated on par-
titioned code (Section 1.1.2.3). Furthermore, the partition-wise postprocessing of common-POI

8A controlling condition of an alarm is a condition in a conditional statement that determines whether the alarm’s
program point will be reached.
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alarms incurs redundancy (Limitation 2). However, none of the alarms postprocessing tech-
niques address the problem of redundancy. Therefore, we turn our focus to improve postpro-
cessing of common-POI alarms. We first targeted reducing redundancy in their manual inspec-
tion. To this end, we ask the following research question.

RQ 4: How can we reduce redundancy in manual inspection of common-POI alarms?

To address the redundancy problem, we group together common-POI alarms and identify a
set of functions for each group. The identified functions of a group are such that inspection of
any one of the grouped alarms in the context of the identified functions guarantees the same result
for other alarms in the same group when they are inspected in the context of the same functions.
Based on these functions, we proposed a method to inspect a group of common-POI alarms. Our
empirical evaluation results indicate that, on average, 45% of alarms generated on partitioned-
code are common-POI alarms. The proposed method to inspect them manually reduces alarms
inspection time by 60%.

We then turned our attention to improve efficiency of AFPE techniques applied to common-
POI alarms (Limitations 2 and 3). We observed that, applying AFPE to common-POI alarms
incurs redundancy similar to redundancy in their manual inspection. Reducing this redundancy
allows to improve efficiency of AFPE techniques. To this end we ask the following research
question.

RQ 5: How can we reduce redundancy in AFPE applied to common-POI alarms?

To reduce the redundancy in AFPE applied to common-POI alarms and thus improve effi-
ciency of AFPE, we reuse results of model checking calls across multiple partitions. Our em-
pirical evaluation indicates that, the reuse of results improves efficiency of AFPE by up to 56%,
with median improvement of 12.15%..

1.3.4 Improving Postprocessing of Alarms Generated on Evolving Code
Last, we revisit the previous observation that only a few alarms postprocessing techniques are
proposed in the context of evolving code, and those techniques take the code changes into ac-
count only for computation of delta alarms but not to postprocess the alarms further (Limita-
tion 4). Therefore, we aim at improving postprocessing of delta alarms generated in the context
of evolving code.

In this work, we also revisited our finding that existing approaches and techniques for post-
processing of alarms are complementary, and thus can be combined together. Therefore, while
addressing the above limitation, we also target combining different approaches identified for
postprocessing of delta alarms. First, we focused to rank and prune delta alarms resulting after
their clustering. Towards this we ask the following research question.

RQ 6: How can we rank delta alarms based on types of the code changes generating
them such that the alarms ranked higher are more likely to be errors than the alarms ranked
lower?
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To address this limitation, we analyze delta alarms generated on a few open source and in-
dustry applications. We observe that a high percentage of delta alarms gets falsely generated
due to the conservative approach taken during their computation. Moreover, the code changes
that generate delta alarms are of different types, and they impact their correspondingly generated
delta alarms differently. Based on the type of code changes, we classify delta alarms into six
classes, and then rank the alarms by prioritizing the classes. The ranking allows to suppress low
priority alarms when time available for manual inspection is limited and the analysis purpose is
bug finding. When the analysis purpose is code proving, similar to the existing alarms ranking
techniques, our ranking technique helps to identify and fix errors early in the manual inspection.
Our evaluation, based on delta alarms generated on 59 versions of seven open source applica-
tions, indicates that the proposed classification and ranking of delta alarms help to identify 61%
of delta alarms as less likely to be errors than the others.

Next, we aim to address the problem of poor efficiency of AFPE applied to delta alarms. To
this end, we ask the following research question.

RQ 7: How can we use code changes to improve efficiency of AFPE applied to delta
alarms?

To improve efficiency of AFPE applied to delta alarms (Limitation 3), we adapt AFPE to
take into account the classification of delta alarms and the code changes that generate them. In
the adapted AFPE, based on the classification and code changes, we determine whether model
checking results from the previous version can be reused during AFPE on the current version.
The reuse of results allows to reduce the number of model checking calls, and thus to reduce
the time taken by AFPE . Our empirical evaluation indicates that, the reuse of results across the
versions reduces the number of model checking calls by median of 84.3%, which in turn reduces
the AFPE time by 64.5%.

1.4 Thesis Outline and Origins of Chapters
As described above, this thesis contributes to the body of research on postprocessing of static
analysis alarms by performing a study to understand its current state and proposing new alarms
postprocessing techniques. Most of the work described in the remaining chapters has been pub-
lished in peer-reviewed conferences. In Figure 1.3, we link each chapter (except Conclusions) to
the research question(s) that it addresses and the study/postprocessing technique it describes. In
the following, we briefly describe outline and origin of each chapter.

Chapter 2: Survey of Approaches for Postprocessing of Alarms In this chapter, we address
RQ 1. We report on the systematic literature search that we performed by combining keywords-
based database search and snowballing. The literature search was performed in June 2016 and
later extended in January 2020. Based on the results of the literature search we identify six
categories of approaches for postprocessing of alarms. We illustrate each category by discussing
a few prominent techniques. Lastly, we discuss merits and demerits of each of the categories of
approaches and our findings from this study. This chapter is based on and significantly extends
the following publication.
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[155] Tukaram Muske and Alexander Serebrenik. Survey of approaches for handling static ana-
lysis alarms. In IEEE International Working Conference on Source Code Analysis and
Manipulation, pages 157–166, 2016. IEEE.

Chapter 3: Repositioning of Alarms In this chapter, we address RQ 2. We first informally
discuss alarms repositioning as a means to overcome the limitation of state-of-the-art clustering
techniques. Next, we present a data flow analysis-based technique to reposition alarms. Lastly,
we evaluate the proposed repositioning technique by means of an empirical study. This chapter
is based on the following publication.

[156] Tukaram Muske, Rohith Talluri, and Alexander Serebrenik. Repositioning of static ana-
lysis alarms. In ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), pages 187–197, 2018. ACM.

Chapter 4: NCD-based Repositioning of Alarms In this chapter, we address RQ 3. We de-
scribe our intuition behind introducing the notion of non-impacting control dependencies (NCDs)
of alarms. Since identifying NCDs is undecidable, next we discuss how their computation can
be approximated. We then describe a novel technique to reposition alarms by taking into account
the approximated NCDs. Last, we evaluate the technique by applying it to 16 open source and
16 closed-source systems. This chapter is based on the following publication.

[157] Tukaram Muske, Rohith Talluri, and Alexander Serebrenik. Reducing static analysis
alarms based on non-impacting control dependencies. In Asian Symposium on Program-
ming Languages and Systems (APLAS), pages 115–135, 2019. Springer.

Chapter 5: Postprocessing of Alarms Generated on Partitioned Code In this chapter, we
address RQ 4 and RQ 5. We describe our approach to group common-POI alarms, and present
a method to inspect the grouped alarms. We then describe a reuse-based technique to improve
efficiency of AFPE applied to common-POI alarms. The first part of this chapter, that answers
RQ4, is based on the publication below, whereas a manuscript is under preparation based on the
work that answers RQ 5.

[148] Tukaram Muske. Improving review of clustered-code analysis warnings. In IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), pages 569–572.
2014. IEEE.

Chapter 6: Postprocessing of Delta Alarms In this chapter, we address RQ 6 and RQ 7. We
begin by describing limitations of postprocessing techniques that compute delta alarms. Next,
based on our observation that code changes of different types affect delta alarms differently, we
design a technique to classify and rank the alarms. Later, we present a reuse-based technique to
improve efficiency of AFPE. A manuscript is under preparation based on the work described in
this chapter.

Chapter 7: Conclusions This final chapter concludes this thesis. It revisits the research
questions and proposes directions for future research.
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Suggested Method of Reading While each chapter has distinct contributions, there is some re-
dundancy in sketching the context and providing details of the preliminaries required to describe
presented techniques. This redundancy has not been eliminated in order to make it possible to
read each chapter independently.

The presented techniques to perform/implement repositioning of alarms, in Chapters 3 and 4,
are based on data flow analysis. The basic concepts related to data flow analysis are described in
popular books by Nielson et al. [163] and Khedker et al. [100]. Assuming that reader is familiar
with the basic concepts, we do not include them in preliminaries provided in those two chapters.

Wherever required we have revised our original work published in the conferences. The
revision is to present this thesis in a coherent manner or reflecting a growing insight. Since eval-
uations of our proposed postprocessing techniques are on similar lines, we combine discussions
of the threats to validity in Conclusions chapter (Section 7.3). Threats to validity, corresponding
to the literature search, are discussed in the respective chapter (Chapter 2). Additionally, this
thesis does not feature a separate chapter on related work. Rather, we discuss, on a per-chapter
basis, the related work relevant to that chapter.



Chapter 2

Survey of Approaches for Postprocessing of Alarms

In this chapter, we review 130 primary studies that propose techniques for postprocessing of
alarms. The studies are collected by combining keywords-based database search and snow-
balling. We categorize approaches proposed by the collected studies into six main categories.
Furthermore, we categorize five of those categories into two or more sub-categories depending
on methods and techniques used to implement the approaches. We provide an overview of the
categories and sub-categories, their merits and shortcomings, and different techniques used to
implement the approaches.

Since our work takes place in industry aiming at analysis of safety-critical systems (Section
1.2.3), we select and study (sub-)categories of the approaches that are useful when static analysis
tools are used for code proving. The findings of this study provide motivation for our work
described in the subsequent chapters.

2.1 Introduction
Automated static analysis tools (ASATs) have showcased their importance and usefulness in
automated detection of code anomalies and defects. However, these tools generate a large number
of alarms [20, 58, 92, 120]. Since last two decades, postprocessing of alarms—processing the
alarms after they are generated by ASATs—is being explored as an alternative (Section 1.2.2).
Recall, that we use postprocessing of alarms to mean the following:

1. Automated processing of alarms to reduce their number prior to reporting them to users.

2. Enriching alarms with additional information so that manual inspection effort gets re-
duced.

3. Simplifying manual inspection of alarms by providing assistance and tool support during
the inspection process.

Note that the above described postprocessing of alarms does not consider reducing the num-
ber of alarms by making underlying static analysis more precise. That is, it excludes the option
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of improving precision of underlying analyses, like value analysis and pointer analysis, imple-
mented in ASATs. Moreover, in postprocessing of alarms, we do not differentiate between the
two type of tools generating the alarms: code proving and bug finding tools.

Considering the benefits offered by postprocessing of alarms, a plentitude of approaches and
techniques have been proposed [58, 84], and the approaches and techniques differ greatly. How-
ever, to the best of our knowledge, a comprehensive overview of these approaches and techniques
is missing. In the absence of such an overview, (1) developers and users of static analysis tools
have a hard time choosing postprocessing techniques from the plentitude of existing ones, and
(2) researchers might be rediscovering existing approaches or miss opportunities to explore new
directions. Therefore, in this chapter we ask the following research question.

RQ 1: What approaches have been proposed for postprocessing of alarms?

To understand the current state of alarms postprocessing, we performed a systematic liter-
ature search combining keywords-based database search [138] and snowballing [15, 213]. We
combine the approaches to complement their strengths: the results of the former provided a start
set required in the latter, and the latter identified the relevant papers which were missed by the
former. The literature search was performed initially during the period of June 4 to June 14,
2016. During writing of this thesis, we extended the literature search to include the relevant
studies that have been published after the initial search. We call the first search initial literature
search and the extended one extended literature search.

Through the two literature searches, we identify 130 primary studies (research papers) that
propose technique(s) for postprocessing of alarms, and identify six main categories of approaches
from them. Furthermore, we categorize five of those categories into two or more sub-categories
depending on methods and techniques used to implement the approaches. We provide an over-
view of the categories and sub-categories, their merits and shortcomings, and different techniques
used in their implementations. Our findings include that the approaches identified are comple-
mentary and can be combined together in different ways.

Application of approaches from the identified (sub-)categories varies depending on purpose
of ASAT generating the alarms: whether the ASAT is used for bug finding or code proving.
Recall from Section 1.2.3 that the main focus of our work is improving ASATs used for code
proving, e.g., to analyze safety-critical systems for their certification. Hence, we have zoomed in
on (sub)-categories of the approaches that are applicable for alarms generated by code proving
tools, and identified limitations of the techniques implementing those approaches (Section 2.6).
We use our findings to improve the techniques in the next chapters.

The following are the contributions of this chapter.

1. A systematic literature search to identify studies that propose techniques for postpro-
cessing of alarms.

2. Categorization of the approaches proposed for postprocessing of alarms into six main cat-
egories and further into sub-categories.

3. Study of the approaches and techniques to identify directions for further research.

Chapter Outline Section 2.2 describes the initial and extended literature searches. Section
2.3 summarizes data extracted from the relevant studies. Section 2.4 describes the identified
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Table 2.1: Keywords used during the keywords-based database search.

I
1) elimination, 2) reduction, 3) simplification, 4) ranking,
5) classification, 6) reviewing, 7) inspection

II
1) static analysis, 2) automated code analysis,
3) source code analysis, 4) automated defects detection

III 1) alarm, 2) warning, 3) alert

categories of approaches for postprocessing of alarms, and Section 2.5 summarizes their mer-
its and shortcomings. Section 2.6 describes our study performed to identify limitations of the
techniques used for implementing the selected (sub)-categories of the approaches. Section 2.7
presents related work, and in Section 2.8 we present conclusions and discuss future work.

2.2 Systematic Literature Search
In this section, we present details of our literature search conducted to collect studies that propose
techniques for postprocessing of alarms. Henceforth in this chapter, we use studies and (research)
papers interchangeably. The literature search is performed by combining keywords-based data-
base search [138] and snowballing [15, 213]. Performing a literature search is a time consuming
activity. Moreover, it requires the searcher to be an expert in the area (postprocessing of alarms)
and finding such a searcher is a hard task. Therefore, the literature search is performed by the
author without involving additional experts. The author has 10 years of experience in developing
a commercial static analysis tool (TCS ECA [197]) and research in designing new techniques for
postprocessing of alarms (Section 1.2.3).

2.2.1 The Initial Literature Search
The initial literature search was conducted during the period of June 4, 2016 to June 14, 2016.

2.2.1.1 Keywords-based Database Search

Inspired by systematic literature reviews [108, 138], we conducted a keywords-based database
search in Google Scholar1 to collect the papers that propose techniques for postprocessing of
alarms. We call these papers relevant papers. The keywords that we used during the search are
listed in Table 2.1, and are identified from the research question RQ 1. The selection of keywords
results in 84 = 7 × 4 × 3 different search strings. A separate search is made in Google Scholar
for each of the search strings, and we examined the first 150 results of every search. During
this process, we examined a total of 12600 results2. For each paper in the results, we checked
whether the paper is to be included in the collection of relevant papers. We identified a paper as
relevant only if

• it proposes a technique, method, or an approach to postprocess alarms; and

• it is a peer-reviewed paper.

1Google Scholar. https://scholar.google.com/
2The number includes duplicates in the search results.

https://scholar.google.com/
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We excluded a paper from the collection of relevant papers if it deals with

• improving precision of the underlying static analyses like value analysis and pointer ana-
lysis, or refinements to the analyses (like [75, 95, 135]);

• an approach or methodology followed to reduce the number of alarms by designing light-
weight static analysis tools;

• fault prediction or error/bug report triaging;

• mining of bug repositories in the context of software maintenance/evolution;

• study of economics or benefits of usage of static analysis tools (like [115, 228]); or

• evaluation, comparison, or benchmarking of precision of various static analysis tools (such
as [30, 184, 198]).

While applying the inclusion/exclusion criteria for each paper, we considered the title, ab-
stract, introduction/motivation, conclusion, and sometimes evaluation section of the paper. In the
case of a paper satisfying both the inclusion and exclusion criteria, the paper was deemed to be
relevant. This keywords-based search led to identification of 46 relevant papers.

2.2.1.2 Snowballing

After the keywords-based search, we performed snowballing [15, 213] due to the following reas-
ons: (a) the search strings considered based on the keywords in Table 2.1, might be incomplete,
e.g., due to terminological differences among the papers; and (b) more importantly, given a good
start set, snowballing approach is found to be more effective and efficient in collecting relevant
papers as compared to the keywords-based searches [15, 213]. By conducting snowballing after
the keywords-based database search, we tried to identify and include as many relevant papers as
possible, which were missed by the database search [119].

Creation of Start Set To begin with, a literature search using snowballing requires a start set
having diversity in the included papers to avoid bias towards any specific class of papers and thus
bias towards any specific approaches identified from them. Moreover, such a start set reduces the
risk of missing a paper from clusters of papers not referring to each other [213]. In our literature
search, we created the required start set by including all the relevant papers identified through
the earlier keywords-based search. Thus, the start set used to perform snowballing included 46
relevant papers.

Backward and Forward Snowballing After the start set is created, we performed iterations of
forward and backward snowballing. In the backward snowballing, the papers in the reference list
of each relevant paper are examined to identify new papers to be included. In the forward snow-
balling, papers citing an included paper are examined to identify new relevant papers (citations
analysis). We performed the citations analysis using Google Scholar. During the snowballing,
we used the same inclusion/exclusion criteria that were used during the earlier keywords-based
search.

In snowballing, iterations of the backward and forward snowballing are performed till sat-
uration has been reached, i.e., until no new relevant papers are identified. In the snowballing
search we conducted, two iterations of the backward and forward snowballing were sufficient.
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During the snowballing process ca. 5800 papers3 were examined for inclusion. With this search
we identified 26 new relevant papers. This activity demonstrates that the combination of the two
search approaches helped each approach to complement the other.

2.2.1.3 Relevant Papers Identified

Therefore, based on our initial literature search, performed by combining the two search ap-
proaches, we identified 72 papers that propose techniques for postprocessing of alarms.

In fact, the initial search has been published in the proceedings of SCAM 2016 [155]. This
search was performed with a larger scope of handling of alarms, which included designing of
light-weight static analysis tools also as an approach to handle alarms. This search identified 79
relevant papers. The number of papers relevant to postprocessing of alarms, 72, is identified after
(1) excluding five papers that belonged to the additional approach (design of light-weight static
analysis tools), and (2) excluding two relevant papers based on our improved understanding of
postprocessing of alarms.

2.2.2 The Extended Literature Search
During writing of this thesis, we extended the literature search to include relevant papers that are
published after the literature search, i.e., after June 14, 2016. The extended search is performed
during the period of Dec 24, 2019 to Jan 10, 2020. To conduct the extended search, we followed
the same methodology used to conduct the initial literature search.

2.2.2.1 Keywords-based Database Search

Using the same keywords in Table 2.1, we performed keywords-based search at Google Scholar.
For each of the 84 search strings, we examined the papers that are published after the initial
literature search, because the papers published before 2016 are already examined in the initial
literature search. We used Google Scholar’s filter option (Since 2016) to include in results only
those papers that are published in 2016 or onwards. From the search results (i.e., papers that
are published in 2016 or onwards), we considered and examined the first 150 results to identify
relevant papers. During identification of the relevant papers, we used the same inclusion and
exclusion criteria (Section 2.2.1.1). This search led to identification of 35 relevant papers.

2.2.2.2 Snowballing

We performed snowballing using 107 relevant papers as the required start set: 72 papers iden-
tified by the initial literature search, and 35 papers identified by the keywords-based search of
the extended search. During the citations analysis (forward snowballing) we considered only the
papers that are published in 2016 or onwards using the Google Scholar’s filter option. During
this search, two iterations of the forward and backward snowballing got performed, in which we
examined 2345 papers4. This search led to identification of 23 additional relevant papers.

3The number includes duplicates in the search results.
4The number includes duplicates in the search results.
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2.2.2.3 Relevant Papers Identified

The two literature searches, the initial and extended searches, together led to identification of 130
relevant papers. This number also includes three papers co-authored by us on which Chapters 3,
4, and 5 are based5.

2.3 Data Extraction and Discussion
This section describes data extracted from those 130 relevant papers identified using the literature
search (Section 2.2), followed by a few observations from the data extracted.

2.3.1 Data Extraction
We reviewed each of the relevant papers and extracted the following data: (1) the approach(es)
proposed in the paper for postprocessing of alarms, (2) techniques and artifacts used to implement
those approaches, (3) static analysis tools used for evaluating the approaches and techniques, and
(4) Programming languages supported by the tools.

We used open tagging [194] to categorize approaches proposed by the papers. The tagging
was performed by the author. The papers having similar approaches are grouped together, and a
broader level approach is identified describing the group. When a paper is found to propose mul-
tiple approaches, i.e. the paper can belong to multiple categories, the most prominent approach
mostly suggested by the title of the paper is selected to determine the category. For example,
for the study by Kremenek et al. [113] that presents clustering and ranking of alarms and util-
izes user-feedback for ranking purposes, we have identified ranking as its primary approach.
Moreover, we categorized the identified categories further into sub-categories depending on the
main characteristics of the approaches or techniques used to implement the approaches.

2.3.2 Discussion of Results
As a result of the above categorization, the following six categories of approaches are identified.

A. Clustering: Alarms are clustered into several groups based on similarity or correlations
among them.

B. Ranking: Alarms are ranked using various characteristics of the alarms, the source code,
history of bug/alarm fixes, code-commit history, and so on.

C. Pruning: Alarms are classified into two classes, actionable and non-actionable and the
non-actionable alarms are pruned.

D. Automated false positives elimination (AFPE): Alarms are processed further using more
precise techniques like model checking and symbolic execution to automatically identify
and eliminate false positives from the alarms.

E. Combination of static and dynamic analyses: Alarms are processed using dynamic ana-
lysis to generate test cases that validate true errors.

5The paper [148], on which Chapter 5 is based, is identified through the initial literature search, whereas the papers
[156] and [157], on which Chapters 3 and 4 are based respectively, are identified through the extended literature search.
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Figure 2.1: Summary of the (sub)-categories of approaches proposed for postprocessing of
alarms and the corresponding relevant papers.
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F. Simplification of manual inspection: Manual inspection of alarms is simplified by enrich-
ing alarms with additional information, providing tool support, and so on.

Figure 2.1 presents summary of the categorization of approaches for postprocessing of alarms,
along with the number of papers in each category. Moreover, it presents the identified sub-
categories and relevant papers belonging to them. In the figure, the sub-categories of approaches
identified from relevant papers obtained through the initial (resp. extended) literature search are
shown in non-italics (resp. italics). The relevant papers collected through the extended literature
search are shown by marking them in bold. The presented categorization is described in detail in
the next section (Section 2.4).
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Figure 2.2: Number of the relevant papers published year- and category-wise.

Figure 2.2 presents year-wise distribution of the relevant papers per category of the ap-
proaches. It indicates that, there is continuous ongoing interest in the topic (postprocessing
of alarms), and comparatively a higher number of papers are published recently (in the last three
years). Moreover, simplification of manual inspection has been the more popular category com-
paratively, while ranking, pruning, and AFPE have received nearly equal popularity.

In Table 2.2 we summarize the data extracted from the relevant papers.

1. The (sub)-category of the approach identified for the paper (column Cat.).

2. The year of its publication (column Year).

3. Techniques and artifacts used to implement those approaches (columns Techniques and
Artifacts used respectively).
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Table 2.2: Summary of data extracted from the relevant papers collected through the initial
and extended literature searches.

Cate-
gories

Sr.
No.

Relevant papers Srch Year Lang. Tools Techniques Artifacts used

A. Clustering of alarms

Sound

1 Jiao et al. [91] EK 2017 C DTSC feature functions defect model
2 Lee et al. [123] EK 2017 C SPARROW abstract interpretation -

3 Lee et al. [124] IK 2012 C Airac
abstract interpretation,
trace partitioning

-

4 Muske et al. [150] IK 2013 C TECA data flow analysis -
5 Muske et al. [156] EK 2018 C TCS ECA data flow analysis -
6 Muske et al. [157] EK 2019 C TCS ECA data flow analysis -

7 Zhang et al. [223] IK 2013 C DTSGCC
semantic slicing,
error state slicing

-

Unsound

8 Fry et al. [67] IK 2013
C,
Java

Coverity,
FindBugs

graph theory
syntactic and
structural info

9 Le and Soffa [121] IK 2010 C Phoenix
fault correlation graphs
(graph theory)

modeled error states

10 Podelski et al. [173] IK 2016 Java Bucketeer Craig interpolation
semantics-based
signatures

11 Sherriff et al. [188] IK 2007
C,
C++

Matlab
singular value
decomposition

alarm signatures

12 Zhang et al. [224] IK 2013 C DTSGCC data mining execution traces
B. Ranking of alarms

Stat.
analysis

13 Jung et al. [94] IK 2005 C Airac
statistical analysis
(Bayesian networks)

syntactic alarm
contexts

14
Kremenek and
Engler [114]

IS 2003 C MC
statistical analysis
(hypothesis testing)

number of alarms

History-
aware

15 Aman et al. [7] ES 2019 Java PMD survival analysis history of alarms

16
Burhandenny
et al. [27]

ES 2017 Java PMD
authorship of
source files

history of alarms

17 Kim and Ernst [103] IK 2007 Java
FindBugs,
PMD, Jlint

statistical analysis
source code
repository metrics

18 Kim and Ernst [104] IK 2007 Java
FindBugs,
PMD, Jlint

statistical analysis
source code
repository metrics

19 Liu et al. [132] EK 2018 Java FindBugs CNNs alarm fix patterns

20
Williams and
Hollingsworth [212]

IS 2005 Java FindBugs repository mining
bug repository
metrics,
alarm fix history

Feed-
back
-based

21 Heckman [81] IK 2007 Java FindBugs statistical analysis
alarm types,
code locality,
alarm fix hitory

22
Kremenek et al.
[113]

IS 2004 C MC machine learning
code locality,
user-feedback

23
Raghothaman
et al. [176]

EK 2018 Java Bingo Bayesian inference probabilistic model

24 Shen et al. [187] IK 2011 Java FindBugs - alarm patterns
25 Wei et al. [210] EK 2017 Java Android Lint NLP techniques user reviews

Multiple
tools

26 Flynn et al. [66] EK 2018
C, C++,
Java,
Perl

SCALe classification models
code base metrics,
alarms fix history

Continued on next page
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Table 2.2 – continued from previous page
Cate-
gories

Sr.
No.

Relevant papers Srch Year Lang. Tools Techniques Artifacts used

27 Kong et al. [111] IS 2007 C

RATS,
ITS4,
FLAW-
FINDER

data fusion alarm metrics

28 Lu et al. [136] EK 2018 C/C++

Cppcheck,
CBMC,
Frama-C,
Clang Static
Analyzer

machine learning
defect types,
code structures

29 Meng et al. [142] IS 2008 Java
FindBugs,
PMD, Jlint

policy prioritization defect patterns

30 Nunes et al. [164] EK 2019 PHP

Pixy, WAP,
RIPS,
phpSAFE,
WeVerca

1-out-of-N strategy
(Non-) Vulnerable
LOCs

31 Ribeiro et al. [179] EK 2018 C, C++

Clang static
analyzer,
Cppcheck,
Frama-C

ensemble learning labeled alarms

32 Ribeiro et al.[180] ES 2019 C, C++

Cppcheck,
Frama-C,
Clang Static
Analyzer

ensemble learning labeled alarms

33
Xypolytos et al.
[217]

EK 2017 C - - test suites

Others

34
Blackshear and
Lahiri [22]

IK 2013 C ACSPEC semantic reasoning
predicates and
specifications

35
Boogerd and
Moonen [23]

IK 2006 C Codesurfer graph theory code metrics

36
Nguyen Quang Do
et al. [55]

EK 2017 Java CHEETAH layered analysis -

37 Heo et al. [86] ES 2019 C SPARROW
differential
Bayesian inference

differential derivation
graph, user feedback

38 Liang et al. [131] IK 2012 Java -
expressive defect
pattern specification
notation (EDPSN)

defect patterns

C. Pruning of alarms

ML

39
Alikhashashneh
et al. [4]

EK 2018 C++ -
SVM, KNN, RIPPER
Random forests

source code metrics

40 Hanam et al. [77] IK 2014 Java FindBugs machine learning alarm patterns

41
Heckman and
Williams [83]

IS 2009 Java - machine learning
alarm
characteristics

42 Heo et al. [85] EK 2017 C - One-class SVM codebase with bugs

43 Koc et al. [110] EK 2017 Java FindSecBugs
Bayes and LSTM
models

code patterns

44 Lee et al. [122] EK 2019 C,C++ - CNNs lexical patterns
45 Meng et al. [143] ES 2017 C - machine learning code property graph

46 Pistoia et al. [172] EK 2017 Java

Phoenix,
IBM Security
AppScan
Source

machine learning
syntactic properties
of alarms

Continued on next page
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Table 2.2 – continued from previous page
Cate-
gories

Sr.
No.

Relevant papers Srch Year Lang. Tools Techniques Artifacts used

47 Tripp et al. [202] ES 2014
Java-
Script

- machine learning user feedback

48
Yüksel and
Sözer [221]

IK 2013
C,
C++

- machine learning
alarm and code
characteristics

49 Yoon et al. [219] IK 2014 Java SPARROW machine learning
structural
characteristics

50 Zhang et al. [227] EK 2019 C DTS machine learning
characteristics
of variables

Delta
alarms

51
Chimdyalwar
and Kumar [36]

IK 2011 C TECA impact analysis assertions

52 Lahiri et al. [117] ES 2013 C SymDiff differential analysis -

53 Logozzo et al. [133] IK 2014 C# cccheck
relative
correctness

necessary/
sufficient
conditions

54 Spacco et al. [191] IS 2006 Java FindBugs
fuzzier matching
algorithms

warning signatures

55
Venkatasubra-
manyam and
Gupta [207]

IK 2014 C++ - learning system
alarm and
error patterns

Others

56 Ayewah et al. [14] IK 2007 Java FindBugs patterns identification
alarm types
and patterns

57 Chen et al. [32] IK 2013 C RELAY thread specialization code regions

58 Das et al. [48] IK 2015 C
Angelic-
Verifier

abductive inference
angelic assertions,
vocabulary

59 Joshi et al. [93] ES 2012 C
CBUGS,
POIROT

differential analysis -

60 Ruthruff et al. [185] IK 2008 Java FindBugs statistical models
code characteristics
/metrics

61 Wang et al. [208] EK 2018 C Scan-build -
fixed defects,
critical functions

D. False positives elimination (FPE)

Model
checking
-
scala-
bility

62
Chimdyalwar et al.
[35]

IS 2015 C
Polyspace,
TCS ECA

BMC,
loop abstraction

program slices

63 Darke et al. [47] IK 2012 C
TECA,
CBMC

BMC,
loop abstraction

-

64 Post et al. [174] IK 2008 C
Polyspace,
CBMC,
SATABS

BMC -

65
Rungta and
Mercer [183]

IS 2009 Java Jlint, JPF
greedy depth
first search

-

66
Valdiviezo et al.
[205]

IK 2014 C++
Parfait,
SPIN

model checking,
program slicing

abstract programs,
program slices

67 Yu et al. [220] IS 2009 Java -
fuzzy inference,
model checking

code
characteristics

Model
checking
-
Effici-
ency

68
Chimdyalwar
and Darke [34]

ES 2018 C
multiple
tools

- program slices

69 Darke et al. [45] ES 2017 C
ELABMC,
CBMC

loop abstraction,
bounded model
checking

program slices

70 Muske et al. [152] IS 2013 C
TECA,
CBMC

model
checking

-

Continued on next page
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Table 2.2 – continued from previous page
Cate-
gories

Sr.
No.

Relevant papers Srch Year Lang. Tools Techniques Artifacts used

71
Muske and
Khedker [153]

IK 2015 C
TCS ECA,
CBMC

model checking,
data flow analysis

-

72 Wang et al. [209] IS 2008 C
Code-
Auditor,
BLAST

constraint-based
analysis,
model checking

constraints,
program slices

Sym-
bolic
exe-
cution

73 Arzt et al. [10] ES 2015 Java FlowDroid symoblic execution -

74 Feist et al. [63] ES 2016 C BINSEC/SE
dynamic symbolic
execution

weighted slices

75 Gerasimov [72] EK 2018 C
Svace,
Anxiety

dynamic symbolic
execution

-

76
Gerasimov et al.
[74]

ES 2018 C Avalanche
dynamic symbolic
execution

-

77 Kim et al. [105] IK 2010 C
Raccoon,
Yices

abstract
interpretation,
symbolic execution

-

78 Li et al. [125] IS 2013
C,
C++

Flawfinder,
SPLINT

trace analysis,
symbolic execution

data flow tree

79 Parvez et al. [169] ES 2016 C
WatSym,
S2E, QEMU,
KLEE

symoblic execution -

80 Zhang et al. [222] EK 2016 binaries
IDA pro,
KLEE

dynamic symbolic
execution

-

SMT/
Dedu-
ctive
veri-
fication

81 Gadelha et al. [68] ES 2019 C,C++
multiple
tools

path-satisfiability
analysis

-

82 Nguyen et al. [160] ES 2019 C

Rose-
checkers,
Frama-C/WP,
CBMC,
Cobra

deductive verification,
model checking,
pattern matching

-

83
Nguyen et al.
[161]

EK 2019 C

Rose-
checkers,
Frama-C/WP,
CBMC,
Cobra

deductive verification -

84 Xu et al. [215] ES 2019 C
LAID,
Boolector

path-satisfiability
analysis

-

E. Combination of static and dynamic analyses

All

85
Aggarwal and
Jalote [3]

IS 2006 C
BOON,
STOBO

- -

86 Chebaro et al. [31] IK 2012 C
Frama-C,
Path-
Crawler

program slicing -

87 Chen et al. [33] IS 2009
x86
binary

IntFinder taint analysis
suspect
instruction set

88 Csallner et al. [41] IK 2005 Java CnC constraint solving
abstract/specific
error conditions

89 Csallner et al. [42] IK 2006 Java
DSD-
Crasher

dynamic inference,
dynamic verification

program invariants,
test cases

90 Ge et al. [70] IS 2011 C# DyTa
dynamic test
generation

-

Continued on next page
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Table 2.2 – continued from previous page
Cate-
gories

Sr.
No.

Relevant papers Srch Year Lang. Tools Techniques Artifacts used

91
Gerasimov and
Kruglov [73]

EK 2018 C Avalanche dynamic analysis -

92 Kiss et al. [107] IK 2015
C,
C++,
Java

FLINDER-
SCA

white-box fuzzing -

93 Li et al. [126] IK 2011 C,C++
Polyflow,
Coverity,
Clockwork

-
data flow
graphs

94 Li et al. [127] IS 2014 Java RFBI
predictive dynamic
analysis

programmer
objections

95 Li et al. [129] IK 2013
C,
C++

HP Fortify concolic testing -

96
Padmanabhuni
and Tan [167]

EK 2016 C
CodeSurfer,
WEKA

dynamic analysis,
machine learning

code characteristics

97 Sözer [190] IK 2015 Java FindBugs Runtime monitoring -

98 Tomb et al. [201] IS 2007 Java
Check‘nŠ-
Crash

symbolic execution -

F. Simplification of manual inspection

Semi-
auto.
diag-
nosis

99 Barik et al. [18] EK 2016 Java FIXBUGS slow fixes -

100
Gao et
al. [69]

EK 2016 C Fortify, KLEE reachability -

101 Rival [181] IK 2005 - Astrée
dependence
analysis

abstract
dependances

102 Rival [182] IS 2005 C Astrée semantic slicing alarm contexts

103
Zhang and
Myers [225]

IS 2014 OCaml -
expressive constraint
language

constraints

104 Zhu et al. [230] EK 2019 C DTS
section-whole path
generation strategy

inter-procedural
diagnosis paths

Feed-
back
-based

105 Mangal et al. [139] IK 2015 Java Eugene probabilistic analysis user-feedback

106
Sadowski et al.
[186]

IS 2015
Multi-
ple

Tricorder
data-driven
ecosystem

user-feedback

Check-
lists

107
Ayewah and
Pugh [11]

IK 2009 Java FindBugs
systematic
reviewing

review checklist

108 Phang et al. [171] IS 2009 - -
checklists-based
review

triaging checklists

alarms-
relevant
queries

109 Dillig et al. [54] IK 2012 C
Compass,
Mistral

abductive inference
alarm-specific
queries

110 Kim et al. [102] EK 2016 Java
Java Path
Finder,
FindBugs

symoblic execution -

111
Muske and
Khedker [154]

EK 2016 C TCS ECA data flow analysis alarm root causes

112 Zhang et al. [226] EK 2017 Java URSA
integer linear
programming

alarm root causes

Auto-
mated
repair

113 Bader et al. [16] ES 2019 Java
Infer,
Error Prone

fix-patterns mining alarms fix history

114 Bavishi et al. [19] ES 2019 Java
FindBugs,
PHOENIX

learning from
examples

alarms fix history

Continued on next page
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Table 2.2 – continued from previous page
Cate-
gories

Sr.
No.

Relevant papers Srch Year Lang. Tools Techniques Artifacts used

115
Marcilio et al.
[140]

EK 2019 Java

SPONGE-
BUGS,
SonarQube,
SpotBugs

program
transformation

alarms fixing
templates

116
Medeiros et al.
[141]

ES 2014 PHP
WAP, Pixy,
PhpMinerII

machine learning labeled alarms

117 Xue et al. [216] ES 2019 Java SonarQube fix-patterns mining alarms fix history

UI &
navi-
gation
tools

118 Anderson et al. [8] IS 2003
C,
C++

CodeSurfer code navigation
program
dependence graph

119 Buckers et al. [26] EK 2017 Java
PMD,
FindBugs,
Checkstyle

user-interactive
exploration

treemap code
structure

120 Cousot et al. [40] IK 2005 C Astrée code navigation -

121 Jetley et al. [90] IK 2008
C,
C++

CodeSonar code navigation -

122 Phang et al. [101] IK 2008 C Locksmith user interfaces program paths

123 Parnin et al. [168] IS 2008 Java
NOSE-
PRINTS

code visualization -

Others

124 Arai et al. [9] IS 2014 Java GBC gamification points/scores
125 Ma et al. [137] ES 2019

126
Menshchikov
and Lepikhin [144]

EK 2018 C,C++
multiple
tools

report verbosity
and generalization

-

127 Muske [148] IK 2014 C TCS ECA review scope chains call graphs

128
Nguyen Quang Do
et al. [162]

EK 2018 - -
video gaming
principles

-

129
Ostberg and
Wagner [166]

IS 2016 Java
HaST,
FindBugs

salutogenesis model
various metrics,
developer
comments

130
Querel and Rigby
[175]

ES 2018 Java
JLint,
FindBugs

statistical models code commits

4. Static analysis tools used for evaluating the approaches and techniques (column Tools).

5. Programming languages supported by the tools (column Lang.).

In the column Srch of Table 2.2, we denote the search method in which the corresponding
paper is collected. We use IK and IS respectively to denote the keywords-based search and
snowballing of the initial literature search, and EK and ES respectively to denote the keywords-
based search and snowballing of the extended literature search.

Following are a few observations made from the data summarized in Table 2.2.

• ASATs that analyze C programs are used in 57% of the relevant studies for evaluating the
postprocessing approaches and techniques proposed, i.e., C is the most popular program-
ming language targeted by alarms postprocessing approaches. In total 65 different ASATs
supporting analysis of C programs have been used.

• Java has been the second most popular language during evaluations in 36% of the relevant
studies. In total these studies used 34 different ASATs to analyze Java programs. Among
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these tools, FindBugs [13] has been found to be the most popular tool. PMD and Jlint have
been other two commonly used ASATs for Java programs. This indicates that usage of
shallow ASATs is common in analysis of Java programs.

2.3.3 Threats to Validity
Construct Validity Our literature study has focused on understanding what techniques have
been proposed in scientific literature for postprocessing of alarms. Threats to construct valid-
ity concern how accurately we operationalize the notion of scientific papers discussing postpro-
cessing of alarms, i.e. how we collect research papers that propose approaches for postprocessing
of alarms.

In a keywords-based literature search, the selection of keywords (i.e., search strings used)
affects the papers identified through the search [84, 108]. The keywords selected in our study are
based on the author’s experience in reading and writing research papers on the topic of postpro-
cessing of alarms [150, 151, 152, 153, 154]. This list of search strings used may not be complete,
and hence a relevant paper might be missed. Moreover, since reviewing all the results for each
search string may not be practically possible, for each search string we reviewed only 150 search
results. As a result, we might have missed relevant papers which appeared later in the results
list. To mitigate these two issues, we performed snowballing by creating the start set from the
relevant papers collected through the keywords-based search. The snowballing helped to identify
relevant papers which were missed by the search.

Ideally, a literature search is to be performed by multiple researchers who have expertise
in the topic under study: postprocessing of alarms. Getting such multiple experts is difficult
because such experts are found to be rare, and the experts require to spend considerable amount of
time in the search and reviewing the relevant papers. Therefore, the complete search, extraction
of data, and categorization of approaches is performed solely by the author without involving
additional experts. This might lead to subjective bias in the identification of relevant papers and
data extraction. Moreover, the selected inclusion and exclusion criteria may introduce attrition
bias [84].

Internal Validity Threats to internal validity concern the extent to which the observations are
grounded in the data collected from the papers identified. Since the data extraction and categor-
ization of the approaches are performed by the author only without involving additional experts,
the categorization of the approaches (Figure 2.1) and the observations made from them (Table
2.3 and Section 2.5) might have been affected by the subjectivity bias. Comparing findings from
our study with the similar studies is one way to validate the findings. However, no such studies
exist. The existing studies about ASATs and alarms [49, 58, 84] have different goals and are not
immediately comparable to our study.

External Validity Threats to external validity concern the extent to which results of the study
generalize beyond the sample studied to the entire population. In our study, since the sample
studied (i.e., 130 papers we have studied) is the same as the population (i.e., all papers ever
published about postprocessing of alarms), threats to external validity are not applicable.
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2.4 Details of Approaches for Postprocessing of Alarms
In this section, we describe the (sub)-categories of approaches (Figure 2.1), that we identified
based on the relevant papers collected through the literature search. For each sub-category, we
briefly describe a few relevant papers as its representatives.

2.4.1 Clustering of Alarms
In this category of the approaches, alarms are clustered (partitioned) into several groups based on
similarity or correlation among them. Since alarms in a group are similar/correlated, generally
only a few of them need to be inspected [123, 124, 150, 223], or all of them get inspected together
[67, 121]. In both cases, clustering of alarms allows to reduce the overall inspection effort.

We categorize the approaches in this category further into sound and unsound. The categoriz-
ation depends on whether the clustering approaches guarantee the following relationship among
the alarms grouped together: when one or more alarms in a cluster are false positives, all the
other alarms in the same cluster are also false positives. We call approaches that guarantee this
relationship sound, otherwise unsound.

2.4.1.1 Sound Clustering

The approaches in this sub-category, cluster alarms by capturing the relationship among them
[123, 124, 150, 223], i.e., when one or more alarms in a cluster are false positives, all the other
alarms in the same cluster are also false positives. The one or more alarms in a cluster, identi-
fied based on the relationship, are called dominant alarms of the cluster. The implementation of
these approaches is based on analysis techniques like data flow analysis [100] and abstract inter-
pretation [38]. Due to the relationship between dominant and the other alarms in each cluster,
inspection of the other alarms is not required when the dominant alarms are found to be false
positives. This clustering approach is suitable for any ASAT since there are no false negatives
arising due to skipping inspection of alarms other than the dominant alarms. This approach can
be implemented in code proving tools used to verify safety-critical systems.

Our studies [156, 157], in which we have proposed repositioning of alarms, belong to this
category of approaches. In these studies, we group more alarms together by overcoming limita-
tions of the sound clustering techniques. The next two chapters (Chapters 3 and 4) are based on
these studies.

2.4.1.2 Unsound Clustering

This sub-category relates to clustering alarms using similarity in syntactic or structural inform-
ation, that is produced by static analysis tools or computed separately. This information relates
to the code, alarm, or both. Unlike sound clustering, there are no guarantees on the relationship
among alarms belonging to the same group. Due to this, skipping inspection of an alarm in a
group can result in a false negative.

The techniques implementing this approach use heuristics to group similar alarms together,
and propose to inspect those grouped alarms together. For example, Fry et al. [67] have used both
structural and syntactic information to partition alarms into groups of related/similar alarms. The
partitioning is based on the hypothesis that alarms on the same or similar execution paths may
be related and can be inspected together to reduce inspection time. On similar lines, Podelski et
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al. [173] have proposed a semantics-based signature for an alarm and the signatures are used to
group the alarms.

Le and Soffa [121] have used cause relationships among the alarms—occurrence of one
alarm can cause another alarm to occur—to group the alarms. They first construct a correlation
graph by determining the error states of alarms and propagating the effects of the error states
along the paths (cause relationships). Then they use the correlation graph to reduce the number
of alarms that need to be inspected along a path. However, reducing the number of alarms this
way may result in false negatives.

2.4.2 Ranking of Alarms
This category corresponds to prioritizing alarms such that the alarms that are more likely to be
true errors are ordered up in the list. This approach is of help when not all alarms can be inspected
and the inspection time should be spent in an effective way.

2.4.2.1 Statistical Analysis-based Ranking

The approaches in this sub-category are based on statistical analysis to rank alarms. For example,
Kremenek and Engler [114] have employed a simple statistical model to rank alarms. It is based
on the observation that, code containing many successful checks (safe cases analyzed by the tool)
and a small number of alarms, tends to contain a real error. As another example, Jung et al. [94]
have used a statistical method (Bayesian statistics) to compute probability of an alarm being true,
and the probabilities are then used to rank the alarms.

2.4.2.2 History-aware Ranking

The approaches in this sub-category use history of alarm fixes as a basis to rank the alarms. For
example, Kim and Ernst [103, 104] have ranked alarms by analyzing the software change history,
where the categories of alarms that are quickly fixed by the programmers are treated as being
more important. On similar lines, Aman et al. [7] estimate lifetimes of alarms by using survival
analysis method, and assign higher priority to alarms which have shorter lifetimes: a shorter-life
alarm is considered to be more important since many programmers resolved it sooner. Williams
and Hollingsworth [212] have proposed a ranking scheme based on commonly fixed bugs and
information automatically mined from the source code repository.

2.4.2.3 User Feedback-based Self-adaptive Ranking

In this sub-category, user feedback is used to rank alarms. For example, Shen et al. [187] have
first assigned a predefined defect likelihood for each alarm pattern, and then ranked the alarms
based on the defect likelihood. Later, the initial ranking is self-adaptively optimized based on
feedback from users. On similar lines, Kremenek et al. [113] have used user-feedback to dynam-
ically reorder ranked reports after each inspection. In their technique, Raghothaman et al. [176]
first associate each alarm with a confidence value by performing Bayesian inference on a prob-
abilistic model derived from the analysis rules. Later in subsequent iterations, user’s feedback is
captured during inspection of the alarms with the highest confidence, and the feedback is used
to recompute the confidences of the remaining alarms. As another example, Heckman [81] has
utilized user feedback from analyzed alarms, by combining it with alarm types and code locality,
to rank the remaining alarms.
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2.4.2.4 Multiple Tools Results-based Ranking

In this sub-category, results of multiple tools employing different static analysis methods are
merged and ranked. In these studies, the merging of results enables results of different tools to
validate each other, which in turn, greatly increases or decreases confidence about false positives
and false negatives [66, 111, 164, 217]. In this sub-category we also include the studies that
merge results of multiple ASATs to benefit from multiple and diverse ASATs [136, 142, 179,
180], and rank the merged alarms using other techniques. We have included them in this category
as all those techniques deal with postprocessing of alarms generated by multiple ASATs.

Out of the eight primary studies in this sub-category, six studies are identified through the
extended literature search. This indicates that the topic of combining results of multiple ASATs
has recently (in the last three years) started attracting interest from the research community.

2.4.2.5 Other Techniques

A few other techniques used to rank alarms include the following:

• Static computation of execution likelihood of the program points at which alarms are re-
ported, also has been used by Boogerd and Moonen [23] for ranking alarms.

• Liang et al. [131] have introduced a novel Expressive Defect Pattern Specification Nota-
tion (EDPSN) to define a resource-leak defect pattern more precisely, and have used it to
prioritize resource leaks.

• Heo et al. [86] have proposed a technique to rank alarms generated on evolving code.
They compute a graph that concisely and precisely captures differences between the deriv-
ations of alarms produced by an ASAT before and after the change. Later, they perform
Bayesian inference, i.e., statistical inference in which Bayes’ theorem is used to update
the probability for a hypothesis as more evidence or information becomes available. The
Bayesian inference is performed on the graph, which enables to rank alarms by likelihood
of relevance to the change.

2.4.3 Pruning of Alarms
This category of approaches corresponds to classifying alarms into two classes, actionable and
non-actionable. The classification of an alarm is based on the fact that alarms which are not
acted upon by the user are seen as false positives and pruned, i.e., not reported to the user.
Therefore, these approaches classify alarms depending on the likelihood of the user acting upon
the alarms. As the pruned alarms are not guaranteed to be false positives, this approach can
result in false negatives. This category is further organized based on the techniques employed to
achieve pruning.

2.4.3.1 Machine Learning-based Pruning

Several studies, such as [4, 77, 83, 219, 221] have employed machine learning to differentiate
between actionable and non-actionable alarms. For example, Hanam et al. [77] have achieved
a binary classification by finding alarms with similar patterns, where the patterns are identified
based on the code surrounding the alarms. Machine learning has been employed to account
for semantic and syntactic differences during the identification of patterns. Yüksel and Sözer
[221] have evaluated 34 machine learning algorithms in their study using 10 different artifact
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characteristics. The plentitude of studies that use machine learning to prune alarms [4, 77, 83, 85,
110, 122, 143, 172, 202, 219, 221, 227] suggests popularity of the approach among researchers.

2.4.3.2 Computation of Delta Alarms

The approaches in this sub-category reduce alarms generated during analysis of evolving soft-
ware by pruning alarms that repeat across versions. Techniques employing this approach apply
various analyses to identify (1) alarms that are newly generated as compared to alarms on the
previous code version, and (2) repeated alarms which are impacted by the code changes. Alarms
reported after applying these techniques are called delta alarms.

The techniques proposed to compute delta alarms [36, 117, 133, 191, 207] vary in the meth-
ods they use for computation. For example, Spacco et al. [191] have identified newly generated
alarms as compared to the previous version, by matching alarms through two approaches: pair-
ing and alarm signatures. Chimdyalwar and Kumar [36] have proposed an approach to prune
repeated alarms generated on evolving software systems. The pruning is achieved by performing
an impact analysis—analyzing the impact of changes made between the two successive versions
on the alarms—and suppressing alarms that are not impacted by the changes.

Logozzo et al. [133] have introduced a new static analysis technique (Verification Mod-
ulo Versions) for reducing the number of alarms while providing sound semantic guarantees.
The proposed technique first extracts semantic environment conditions—sufficient or necessary
conditions—from a base program (previous version) and uses those conditions to instrument a
new version. Later, the instrumented code is verified, which results in pruning of alarms.

2.4.3.3 Other Techniques

Following are a few other techniques proposed to prune alarms.

• Statistical models are used by Ruthruff et al. [185] to identify and prune non-actionable
alarms.

• Das et al. [48] have constrained the analysis verifier to report alarms only when no ac-
ceptable environment specification (specified through a vocabulary) exists to prove the
assertion.

• Chen et al. [32] have pruned alarms corresponding to data-races through thread special-
ization: distinguishing the threads statically by assigning IDs to threads and fixing their
number.

2.4.4 Automated False Positives Elimination
In this approach, more precise techniques like model checking and symbolic execution are used
to identify and eliminate false positives from alarms. An assertion is generated corresponding
to each alarm and it is verified using model checkers [35, 47, 174, 205, 220] or tools based
on symbolic execution [10, 63, 72, 74, 105, 125]. The approaches in this category are more
precise as compared to the other approaches, as they precisely eliminate false positives from
alarms without any user intervention (inspection). However, the postprocessing of alarms in
this approach generally faces the issues of non-scalability and poor performance due to the state
space problem associated with model checking.

We organize this category into sub-categories based on the techniques used in AFPE: model
checking, symbolic execution, and deductive verification.
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2.4.4.1 Model Checking-based AFPE

In this approach, model checkers such as CBMC [28] are used to eliminate false positives. We
partition the approaches in this sub-category into two parts depending on whether they address
the non-scalability or poor-efficiency issues related to the AFPE process.

Note that other combinations of static analysis and model checking have been proposed in
the literature [25, 62, 95], where these two techniques iteratively exchange information. We treat
this approach differently from false positives elimination (postprocessing of alarms), because the
aim of this combination is to improve precision of static analysis and improving the analysis
precision is out of scope of postprocessing of alarms (Section 2.2.1.1).

Achieving Scalability Post et al. [174] have proposed an incremental approach, called context
expansion, to use a model checker in a more scalable way. In this approach, verification of
assertion(s) starts from the function containing the assertions, and then the verification context is
gradually incremented to the direct and indirect callers of the function. That is, the verification is
started with the minimal context and the context is expanded later on a need basis. This approach
also has been observed to be beneficial by other studies [47, 153].

Program slicing [199] also has been another commonly used technique for reducing the state
space, and in turn, achieving scalability [35, 47]. On similar lines, a notion of abstract programs
has been proposed by Valdiviezo et al. [205] to achieve scalability of model checkers.

Improving Efficiency The model checking-based AFPE has been found to have poor effi-
ciency due to (1) a large number of alarms that need to be processed, (2) multiple model check-
ing calls for a single assertion due to the context expansion [174], and (3) considerable amount
of time (on an average 3 to 5 minutes6) that model checking usually takes. To address this is-
sue, i.e., to improve efficiency of AFPE, different techniques have been proposed. For example,
Muske et al. [152, 153] have proposed static analysis-based techniques to predict outcome of a
given model checking call. The predictions are used to reduce the number of model checking
calls and thus, improve AFPE efficiency. Darke et al. [34] partition the generated assertions into
disjoint groups based on the data and control flow characteristics, and verify assertions in one
group at a time. Wang et al. [209] have used program slicing to improve efficiency of model
checking-based AFPE.

2.4.4.2 Symbolic Execution-based AFPE

In this sub-category, symbolic execution is used to eliminate false positives [105, 125, 222].
In symbolic execution, instead of supplying the concrete inputs to a program (e.g. numbers),
symbols representing arbitrary values are supplied, and the values of program variables are rep-
resented with symbolic expressions [106]. To address the issue of too many execution paths
during symbolic execution, several studies use a variant of symbolic execution, called dynamic
symbolic execution (or concolic execution) [10, 63, 72, 74, 169]. This variant involves running
a symbolic execution along with a concrete one.

2.4.4.3 SMT Solvers/Deductive Verification-based AFPE

In this sub-category, SMT solvers [50, 147] or deductive verification (also called theorem prov-
ing) [65] are used to eliminate false positives [68, 160, 161, 215]. For example, Nguyen et al.

6This time taken includes the time taken to generate program slices before the assertion is verified by a model checker.
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[160, 161] use deductive verification to eliminate false positives. In the studies that use SMT
solvers for AFPE [68, 215], for each alarm, constraints are generated that represent the condi-
tions under which the alarm is an error. Then, the constraints are checked using a SMT solver
to determine their satisfiability. When the constraints are found to be unsatisfiable, the alarm is
identified as a false positive and eliminated.

2.4.5 Combination of Static and Dynamic Analyses
As a general theme of approaches in this category, static analysis alarms are checked using dy-
namic analysis if they are true errors and the test cases witnessing failures are reported as error
scenarios to the user. This combination requires executing the programs, which is usually ab-
sent in static analysis. A few of these studies adopting this combination approach are described
below.

Csallner et al. [41] have combined static analysis and concrete test-case generation (Check-n-
Crash tool), where a constraint solver is used to derive specific instances of abstract error condi-
tions identified by a static checker (ESC/Java). Later, actual test cases exhibiting error scenarios
uncovered by true alarms are presented to the users. As an advancement to this approach, Csall-
ner et al. [42] have used a three step approach, consisting of dynamic inference, static analysis,
and dynamic verification (DSD-Crasher tool). The processing in the approach includes (a) in-
ferring likely program invariants using dynamic analysis, (b) using the invariants as assumptions
during the static analysis step, and (c) generating test cases that validate true alarms.

Program slicing also has been used for the efficiency of techniques employing this approach:
confirming/rejecting more number of alarms in a given time [31]. The efficiency is achieved
by reporting more precise error information on simpler programs having shorter program paths
and showing values for useful variables only. This reporting reduces the alarms analysis and
correction time by the tool users.

Li et al. [127] have proposed a concept of residual investigation—a dynamic analysis serving
as the runtime agent of a static analysis—for checking if an alarm is likely to be true. The novelty
of the proposed approach lies in predicting errors in executions, which are not actually observed.
This predictive nature of their approach is of significant advantage when generation of test cases
is hard for very large and complex programs [127].

2.4.6 Simplification of Manual Inspection
The approaches in this category aim to simplify manual inspection of alarms by supporting users
during the inspection process. Based on the methods used for the simplification, we organize the
approaches into the seven sub-categories described below.

2.4.6.1 Semi-automatic Alarm Inspection

This sub-category relates to providing support for semi-automatic inspection of alarms. For
example, to help the user in inspection of alarms by making the inspection more automatic, Rival
[181] has enhanced semantic slicing (i.e., computation of precise abstract invariants for a set
of erroneous traces) with information about abstract dependences. An abstract dependence is a
dependence that can be observed by looking at abstractions of the values of the variables only.
In another study, Rival [182] has proposed a framework for semi-automatic inspection of alarms.
In this framework, an initial static analysis is refined into an approximation of a subset of traces
that actually lead to an error. Later, a combination of forward and backward analyses is used to
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prove whether this set is empty. If this set is proved to be empty, the alarm is concluded as a false
positive.

As another example, Zhu et al. [230] have proposed a novel approach that combines demand-
driven analysis and inter-procedural data flow analysis. Using the combined analyses inter-
procedural paths are generated to help the user inspect alarms automatically.

2.4.6.2 Feedback-based Manual Inspection

A few studies have been found to capture user-feedback to simplify manual inspection of alarms.
For example, Mangal et al. [139] have formulated user-guided program analysis to shift decisions
about the kind and degree of approximations to apply in an analysis from the analysis writer to
the analysis user. In the proposed analysis approach, user feedback about which analysis results
are liked or disliked is captured and the analysis is re-run [139]. This approach uses soft rules to
capture the user preferences and allows users to control both the precision and scalability of the
analysis.

Sadowski et al. [186] have proposed a program analysis platform to build a data-driven eco-
system around static analysis. The platform is based on a feedback loop between the users of
static analysis tool(s) and writers of those tool(s). The feedback loop is towards simplifying
inspection of alarms reported by the tools.

2.4.6.3 Checklists-based Manual Inspection

In this approach, checklists are used to systematically guide users during manual inspection of
alarms. Ayewah et al. [11] have proposed use of checklists to enable more detailed review of
static analysis alarms. On similar lines, Phang et al. [171] have used triaging checklists to
provide systematic guidance to users during manual inspection of alarms. The users follow the
instructions on the checklist, during manual inspection of alarms, to answer each question and
to determine conclusions about the alarms. It also proposes that the checklists are designed by
tool developers so that, (a) known sources of imprecision in their tools are pointed out, and (b)
users are instructed on how to look for those sources of imprecision. Additionally, the checklists
are customized to individual alarms so that a minimum number of questions are answered during
inspection of an alarm.

2.4.6.4 Alarms-relevant Queries

In this approach, alarm-specific queries are presented to the user for achieving effective and effi-
cient manual inspection of alarms. For example, Dillig et al. [54] have proposed an approach to
classify alarms semi-automatically as errors or non-errors by presenting alarm-specific queries to
the users. Abductive inference is used to compute small and relevant queries that capture exactly
the information needed from user to discharge or validate an error. Two types of queries (proof
obligation and failure witness queries) are framed, and they are ranked using a cost function so
that easy-to-answer queries are presented first to the users.

Zhang et al. [226] have combined a sound but imprecise analysis with precise but unsound
heuristics, through user interaction. This combined approach poses questions to the user about
the root causes that are targeted by the heuristic. If the user confirms them, only then is the
heuristic applied to eliminate the false alarms. Muske and Khedker [154] have proposed cause
points analysis. In this analysis, root causes of alarms are identified, and queries generated
specific to the causes are presented to the user for reducing the manual inspection effort.
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2.4.6.5 Automated Repair

Recent studies have also been aiming at automated repair of alarms. For example, Bavishi et al.
[19] have proposed a technique for automatically generating patches for static analysis violations
by learning from examples. Aiming at improving usability of ASATs, Marcilio et al. [140] auto-
matically provide fix suggestions, that is modifications to the source code that make it compliant
with the rules checked by the ASATs. As another example of this approach, Xue et al. [216]
propose a history-driven approach to automatically fix code quality issues detected by ASATs,
by utilizing the fixing knowledge mined from the change history in the code repositories.

2.4.6.6 Usage of Novel User-interfaces/Visualization Tools

This sub-category deals with usage of code navigation/visualization tools that simplify the code
traversals performed by the user while inspecting alarms manually [8, 40, 90]. For example,
Phang et al. [101] have presented a novel user interface toolkit (path projection) to help users
to visualize, navigate, and understand program paths during the inspection. Parnin et al. [168]
have used a catalogue of lightweight visualizations to help users in reviewing the alarms. In
their study, a simple light-weight visualization is designed for each alarm. Buckers et al. [26]
have proposed UAV (Unified ASAT Visualizer) that provides an intuitive visualization, enabling
developers, researchers, and tool creators to compare the complementary strengths and overlaps
of different Java ASATs. The UAV’s enriched treemap and source code views provide its users
with a seamless exploration of the alarm distribution from a high-level overview down to the
source code.

2.4.6.7 Other Techniques

Following are a few other techniques proposed to simplify inspection of alarms.

• Arai et al. [9] have explored a gamification approach and proposed a novel gamified tool
for motivating developers to remove alarms through manual inspection. The tool proposed
calculates scores based on the alarms removed (inspected) by each developer or team. On
similar lines, Nguyen Quang Do et al. [162] have proposed to leverage the knowledge of
game designers, and to integrate gaming elements into analysis tools to improve their user
experience.

• In our study [148], on which Chapter 5 is based, targeting reduction in the inspection effort,
we have proposed a method to group and inspect alarms that are reported for the same POI
but belonging to different code-partitions (Section 1.1.2.3). The proposed method allows
to identify alarms in most of the groups as false positives by inspecting only one alarm
from those groups.

• The overflow of information and decisions to be made during manual inspection of alarms
can be tiring and cause stress symptoms to the reviewers. To fight stress during the inspec-
tion, Ostberg and Wagner [166] have proposed to use salutogenesis model that has been
used in health care.

• Menshchikov and Lepikhin [144], aiming at evaluating and improving quality of reports
of ASATs, generalize the tool output messages and explore ways to improve reliability
of comparison results. To this end, they introduce informational value as a measure of
report quality with respect to 5Ws (What, When, Where, Who, Why) and 1H (How To
Fix) questions.
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No. Category Merits Shortcomings

A. Clustering In sound clustering, mostly dominant
alarms need to be inspected while skip-
ping inspection of the other alarms,
whereas in unsound clustering, the
group-wise inspection of alarms re-
duces inspection effort.

Unsound clustering may result in false
negatives. Reduction in the number of
alarms (by sound clustering) depends
on the percentage of alarms identified
as dominant.

B. Ranking During manual inspection of alarms,
the alarms that are more likely to be
errors get inspected early, and this ap-
proach does not result in false negat-
ives.

It requires inspecting all the reported
alarms.

C. Pruning Only the actionable alarms are to be in-
spected, while the other alarms being
identified as non-actionable are not re-
ported to the user.

This pruning approach may result in
false negatives as a pruned alarm can-
not be guaranteed to be a false posit-
ive (except the reliable techniques that
compute delta alarms [36, 133]).

D. False positives
elimination

It is automatic and more precise as com-
pared to the other approaches to reduce
the number of alarms.

Techniques employing this approach
usually face issues related to non-
scalability and poor efficiency.

E. Combination of
static and dy-
namic analyses

It presents error scenarios for true
alarms.

It requires support for executing the
programs (e.g., test cases, and run-
time environment) which is usually
absent during static analysis process.

F. Simplification of
manual inspec-
tion

It provides significant aid to the users
during manual inspection.

User involvement is a must.

Table 2.3: Merits and shortcomings of the categories of approaches for postprocessing of alarms.

2.5 Discussion
Table 2.3 summarizes merits and shortcomings of the identified approaches for postprocessing
of alarms. It shows that the categories of approaches are complementary: shortcomings of one
approach are merits of some other approaches and they can complement each other.

We observe that possible combinations of the approaches are not widely studied or evaluated.
There exist a few studies, such as [113, 152], that consider the combinations of the approaches
and find them to be promising. Thus, exploring the possible combinations of these various ap-
proaches can be a future research direction to postprocess alarms more effectively. For example,
only the dominant alarms identified through sound clustering (Section 2.4.1.1) can be ranked
(Section 2.4.2) or pruned (Section 2.4.3). In another example, pruning of alarms followed by
AFPE (Section 2.4.4) can help each other: AFPE eliminates false positives from the actionable
alarms resulting after pruning, and processing only the actionable alarms (a subset of alarms
generated) reduces the number of alarms to be processed by the AFPE techniques.
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Moreover, combinations of the approaches can be implemented with two strategies: sequen-
cing the approaches one after the other (pipelining), and running them in parallel. The position-
ing of approaches in the combinations with pipelining can vary depending on the requirements
in practice. For example, choice for the first approach to be implemented, between pruning
and AFPE when they are to be combined, can be made based on total time available for pro-
cessing the alarms. The other strategy, parallelization of the approaches can help in enhancing
confidence about false positives and true errors. For example, the results obtained in isolation
from approaches like ranking, pruning, and combination of static and dynamic analyses, can be
merged together to increase confidence about alarms that are more likely to be false positives or
errors.

The above combinations of the approaches also may introduce a performance penalty. Thus,
performance of such combinations also needs to be studied while studying advantages and dis-
advantages of the combinations. We believe, given the high computing power of machines com-
monly available today, implementing such combinations in practice is feasible and can help
practitioners considerably.

Among the identified six main categories, (sound) clustering, ranking, AFPE, and simpli-
fication of manual inspection, do not result in false negatives7. Thus, these approaches can be
implemented in code proving ASATs. All categories and sub-categories can help to postprocess
alarms generated by a bug finding ASAT.

2.6 Detailed Study of the Approaches
In this section, we describe our study of alarms postprocessing techniques to identify their limit-
ations. The work presented in the next chapters overcomes the identified limitations.

Recall from Section 1.2.3 that the main focus of our work is improving ASATs used for
code proving, e.g., to analyze safety-critical systems for their certification. In particular, we
aim to improve postprocessing of alarms generated by our commercial static analysis tool, TCS
ECA [197]. Therefore, we select the following four (sub)-categories of the approaches that are
applicable in the context of code proving: (1) sound clustering, (2) computation of delta alarms
(pruning), (3) AFPE, and (4) simplification of manual inspection. We then studied the techniques
implementing the selected approaches to identify areas of improvement. Following we describe
identified limitations of those techniques.

Sound Clustering of Alarms The approaches in this sub-category are proposed to reduce the
number of alarms by identifying fewer dominant alarms for a group of similar/related alarms.
We find that state-of-the-art techniques [123, 150, 223] proposed to implement sound clustering
of alarms fail to group similar alarms that appear in commonly occurring scenarios, e.g., when
similar alarms appear in the different branches of an if condition. The failure is due to the
conservative assumption these techniques make about the transitive control dependencies of the
alarms. Therefore, improving these techniques to group alarms in those scenarios can help to
further reduce the number of alarms by the clustering approach. Our work presented in Chapters
3 and 4 is motivated by this observation.

Simplification of Manual Inspection TCS ECA employs code partitioning approach to ad-
dress the issues like incomplete code and non-scalability on very large systems. As discussed

7No alarm is removed/pruned unless it is guaranteed be false either automatically or by the tool-user.
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in Section 1.1.2.3, multiple alarms can get generated for a single program point when the point
belongs to multiple parts (called common-POI alarms). Therefore, more alarms get generated on
partitioned-code compared to the corresponding non-partitioned code. We find that

1. postprocessing common-POI alarms in the context of each of their code partitions incurs
redundant effort related to, e.g, manual inspection of those alarms or processing them using
AFPE techniques; and

2. although several techniques are proposed for postprocessing of alarms, none of the tech-
niques considers the nature of partitioned-code during postprocessing of common-POI
alarms8, and therefore the techniques are unable to eliminate the redundancy in postpro-
cessing of common-POI alarms.

Considering the nature of partitioned-code during postprocessing of common-POI alarms can
help to reduce the redundant effort incurred during the postprocessing. Our work presented in
Chapter 5 is motivated by this observation.

Computation of Delta Alarms We find that, state-of-the-art techniques [36, 133, 191, 207]
that compute delta alarms take code changes into account only for computation of delta alarms
but not to postprocess those alarms further. Postprocessing the delta alarms further based on the
code changes can help obtaining further benefits. The work presented in Chapter 6 is motivated
by this observation.

Automated False Positives Elimination Based on evaluations of the techniques proposed to
improve efficiency of AFPE [34, 152, 153], we find that even after applying those techniques
AFPE suffers from poor efficiency: the evaluations of the AFPE techniques [34, 152, 153] in-
dicate that processing a group of similar/related assertions, on an average, involves making five
calls to a model checker and it takes around four minutes. Therefore, poor performance of AFPE
techniques is a major concern when they are applied to very large systems. This observation led
to our work presented in Chapters 5 and 6.

2.7 Related Work
In this section, we compare our work with recently published (1) literature reviews of techniques
for postprocessing of alarms, and (2) studies about evaluation or benchmarking of tools/tech-
niques that postprocess alarms. We start by comparing our literature search with the systematic
literature review conducted by Heckman and Williams [84] as it reviews techniques for ranking
and pruning of alarms. In this review, approaches proposed by 21 different studies for postpro-
cessing of alarms, are analyzed and categorized into two categories, ranking and pruning. Among
those 21 studies, 10 studies propose classification of alarms into actionable or non-actionable
classes, while the other 11 studies propose ranking of alarms. Compared to this review, our
literature search is more comprehensive as it includes more studies (130) that propose a vari-
ety of approaches for alarms postprocessing. For example, due to inclusion of those additional
studies, we could identify new categories like clustering, automated false positives elimination,
and simplification of manual inspection. Moreover, wherever suited, the studies in each category

8The only prior study that addressed grouping of alarms across partitions is our earlier study [148] included in this
thesis as Chapter 5.
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are further categorized into multiple sub-categories. This categorization helps to understand the
proposed approaches better and comprehensively. Five of those 21 studies included in the review
by Heckman and Williams [84] were not included in our study: the excluded studies performed
evaluations of ASATs (e.g. [82] and [165]) rather than introducing new postprocessing tech-
niques.

In their mapping study, Mendonca et al. [49] have selected and analyzed 51 studies to identify
state-of-the-art static analysis techniques and tools, and main approaches developed for postpro-
cessing of alarms. In our study, as our focus was on different approaches through which alarms
are postprocessed, we did not include 39 of those 51 studies. The excluded studies dealt with
improving analysis precision, study of defects, and even evaluation and benchmarking of ASATs.

In their mapping study, Elberzhager et al. [58] have classified and provided analysis of ap-
proaches that combine static analysis and dynamic quality assurance techniques. The static qual-
ity assurance techniques deal with code reviews, inspections, walkthroughs, and usage of static
analysis tools, whereas our literature search is with much broader scope of postprocessing of
alarms: in our survey, combination of static and dynamic analyses is one of the categories of
approaches to postprocess alarms.

Li et al. [128] have performed a systematic literature review to provide overview of state-of-
the-art works that statically analyze Android apps. From these works, they highlight the trends of
static analysis approaches, pinpoint where the focus has been put, and enumerate the key aspects
where future research is still needed. In this review, 124 research papers are studied. The review
is performed with much broader scope: the review is performed mainly in the following five
dimensions (1) problems targeted by the approach, (2) fundamental techniques used by authors,
(3) static analysis sensitivities considered, (4) Android characteristics taken into account, and (5)
the scale of evaluation performed. Unlike to this review, our study is focused on understanding
the state of postprocessing of alarms irrespective of domains of the applications being analyzed.

To the best our knowledge, there does not exist other literature survey or reviews studying
alarms postprocessing approaches. Several other studies, like [6, 130, 218] evaluate various
techniques for alarms postprocessing. Allier et al. [6] have proposed a framework for comparing
different alarms ranking techniques and identifying the best approach to rank alarms. The vari-
ous techniques proposed for postprocessing of alarms are compared using a benchmark having
programs in Java and Smalltalk, and three static analysis tools: FindBugs, PMD, and SmallLint.
Using this framework, algorithms to rank alarms are compared. In another study, Liang et al.
[130] have proposed an approach for constructing a training set automatically, required for ef-
fectively computing the learning weights for different impact factors. These weights are used
later to compute scores used in ranking/pruning of alarms. As opposed to these studies, our
literature survey studies approaches that have been proposed for postprocessing of alarms.

As compared to the existing reviews and studies which aimed at understanding postpro-
cessing of alarms, our presented study is based on more papers and describes multi-level categor-
ization of the approaches. Therefore, it can help the users and designers/developers of ASATs to
choose the postprocessing approaches suited in their work.

2.8 Conclusion and Future Work
In this chapter, we have studied approaches proposed in the literature to postprocess alarms gen-
erated by ASATs. We conducted systematic literature search, by combining keywords-based
database search and snowballing, to collect research papers that propose techniques for postpro-
cessing of alarms. Through the literature search, we identified 130 papers relevant to the topic.
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We reviewed the papers, and extracted and categorized the approaches proposed by them. Our
categorization shows that,

Six main categories of the approaches, namely clustering, ranking, pruning, AFPE, com-
bination of static and dynamic analyses, and simplification of manual inspection, have been
proposed for postprocessing of alarms.

During the categorization, wherever appropriate, the main categories are further categorized
into multiple sub-categories depending on the techniques used to implement those approaches.

We have summarized the merits and shortcomings of these categories (Section 2.5) to assist
users and designers/developers of ASATs to make informed choices. The categorized postpro-
cessing approaches, being complementary, provide an opportunity to combine them. We observe
that,

The identified approaches can be combined together in several ways, and feasibility of
the different combinations, their advantages and disadvantages, however, need to be studied.

Several of the identified categories—sound clustering, ranking, AFPE, simplification of manual
inspection—can help ASATs that are used for code proving. Considering our work in industry
to verify safety-critical systems, we studied the techniques implementing those categories of the
approaches to identify areas of improvement. Our observations from this study led to the work
described in the next chapters.



Chapter 3

Repositioning of Alarms

The large number of alarms reported by static analysis tools is often recognized as one of the
major obstacles to industrial adoption of such tools.

We present repositioning of alarms, a novel automatic postprocessing technique intended to
reduce the number of reported alarms without affecting the errors uncovered by them. The reduc-
tion in the number of alarms is achieved by moving groups of similar alarms along the control
flow to a program point where they can be replaced by a single newly created alarm, called
repositioned alarm. In the repositioning technique, as the locations of repositioned alarms are
different from locations of the errors uncovered by them, we also maintain traceability links
between the repositioned alarms and the corresponding original alarms. The presented tech-
nique is tool-agnostic and orthogonal to many other techniques available for postprocessing of
alarms.

To evaluate the technique, we applied it as a postprocessing step to alarms generated for four
verification properties on 16 open source and four industry applications. The results indicate that
the alarms repositioning technique reduces the number of alarms by up to 20% over state-of-the-
art alarms clustering techniques with median reduction of 7.25%.

3.1 Introduction
Static analysis tools have shown promise in automated detection of code anomalies and pro-
gramming errors [12, 14, 21, 206, 228]. However, these tools often generate a large number of
alarms, i.e., warning messages notifying the tool-user about potential errors [20, 92, 139, 186].
A high percentage of these alarms are false positives, i.e., alarms that do not represent an er-
ror. To partition alarms into false positives and true errors, their postprocessing, often manual,
is inevitable [54, 84]. The large number of alarms generated and the cost involved in parti-
tioning them manually have been recognized as major concerns in adoption of static analysis
tools [20, 37, 92, 120].

Clustering of alarms, one of the six categories of approaches that we identified in the literature
study (Chapter 2), is commonly used to reduce number of alarms. State-of-the-art clustering
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techniques [71, 124, 150, 223] reduce the number of alarms by creating groups of similar alarms1

and identifying several alarms in each group as dominant alarms of the group. However, there
are instances where the clustering techniques fail to group similar alarms, e.g., similar alarms
which belong to different branches of an if statement. This limitation is further illustrated in
Section 3.2. To address this limitation, we ask the following research question.

RQ 2: How can we automatically group similar alarms that state-of-the-art alarms
clustering techniques fail to group?

To overcome the limitations of state-of-the-art clustering techniques, motivated by the work
of Gehrke et al. [71], we propose to reposition alarms. Repositioning aims at reducing the number
of alarms by moving groups of similar alarms along the control flow to a program point where
they can be replaced by a single newly created alarm. We call the alarms generated by a static
analysis tool original alarms, and the new alarms that we create repositioned alarms. We perform
repositioning of alarms with the following primary goal.

To reduce the number of alarms without reducing the number of errors detected by them.

Furthermore, since traditional static analysis tools report alarms at the locations where run-
time errors are likely to occur, the user has to traverse the code back to the causes of an alarm to
identify whether the alarm represents an error [54, 101, 148]. Given the large size and complexity
of industrial source code [148], this traversal can be a daunting task. To reduce these code
traversals, we therefore, through repositioning, also aim:

To report alarms closer to their causes.

As the locations of repositioned alarms are different from locations of the errors detected by
them, we also maintain traceability links between repositioned alarms and their corresponding
original alarms. The traceability links are useful during manual inspection of the repositioned
alarms, and get explored by the user only when a repositioned alarm is found to uncover an error.

We implement alarms repositioning by propagating alarm conditions—checks performed
by the analysis tools—first in the backward direction and later in the forward direction. The
propagation of conditions is through computation of anticipable and available conditions re-
spectively using data flow analyses [100, 163, 193].

Our repositioning technique is tool-agnostic and orthogonal to many other techniques avail-
able for postprocessing of alarms. The technique is suitable for alarms reported by analysis
tools that compute flow of values of the program variables, e.g., Polyspace Code Prover [1] and
Frama-C [43]. We do not consider alarms reported based on structural information or local bug
patterns [88].

We performed empirical evaluation of the proposed technique using 33,162 alarms gener-
ated by a commercial static analysis tool, TCS ECA [197], on 16 open source and four industry
applications. The open source applications were selected from the benchmarks used to evalu-
ate earlier alarms clustering techniques [124, 223]. The industry applications were embedded

1Two alarms are said to be similar if the checks performed by them are same (Section 3.2.2).
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systems belonging to the automotive domain. Before performing repositioning, the input alarms
were processed using state-of-the-art clustering techniques [124, 150, 223]. We observed that the
proposed repositioning of alarms reduces the number of alarms by up to 20% over the existing
clustering techniques, with median and average reduction being 7.25% and 6.47%, respectively.

The key contribution of this chapter is a novel and empirically evaluated postprocessing
technique that reduces the number of alarms by repositioning. Repositioning reduces the number
of alarms while detecting the same number of errors.

Chapter Outline Section 3.2 presents an informal overview of the repositioning technique us-
ing a motivating example. Section 3.3 describes repositioning of alarms formally, while Sections
3.4 and 3.5 describe two data flow analyses used to reposition alarms. Section 3.6 discusses our
experimental evaluation. Section 3.7 presents related work, and Section 3.8 concludes.

3.2 Repositioning of Alarms
In this section, we informally describe repositioning as means to reduce the number of alarms.
We first recapitulate the notions related to the control flow graph (CFG) of a program.

3.2.1 Background: Control Flow Graph
A control flow graph (CFG) [5] of a program is a directed graph 〈N , E〉, where N is a set of
nodes representing the program statements (like assignments and controlling conditions); and E
is a set of edges where an edge 〈n, n′〉 represents a possible flow of program control from n ∈ N
to n′ ∈ N . A CFG has two distinguished nodes Start and End, representing the entry and exit of
the corresponding program, respectively. We use n→ n′ to denote an edge from node n to node
n′. Depending on whether the program control flows conditionally or unconditionally along an
edge, the edge is labeled either as conditional or unconditional. We denote the condition, i.e., the
logical formuala, corresponding to a conditional edge u→ v as cond(u→ v).

Except for the Start and End nodes, we assume that there is a one-to-one correspondence
between the CFG nodes and their corresponding statements in the program. Thus, we use the
terms statement and node interchangeably. Henceforth in code examples, we show only one
statement per line and use nm to denote the node of the program statement at line m. We assume
that each of the program statements is reachable and does not cause side effects2. For a given
node n, we use pred(n) (resp. succ(n)) to denote predecessors (resp. successors) of n in the
graph.

Due to the one-to-one correspondence between the CFG nodes and their corresponding state-
ments, the entry and exit of a node respectively correspond to the location just before and im-
mediately after execution of the node’s corresponding statement. We use entry(n) and exit(n) to
respectively denote the entry and exit of a node n, i.e., the locations just before and immediately
after execution of the statement corresponding to the node n. For every node n, entry(n) and
exit(n) are referred to as program points.

A path from a node ni ∈ N to node nk ∈ N is a sequence of nodes ni, ni+1,..., nk such
that for every consecutive pair of nodes (nj , nj+1) in the path there is an edge from nj to nj+1.
For every node appearing on a path from a node ni ∈ N to node nk ∈ N , we assume that

2A side effect is any change in program state that occurs as a by-product of the evaluation of an expression/statement
[79]. For example, x = y++; is a statement with side effect, because it increments value of y in addition to evaluating
the assignment expression (assigning y to x).
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1 void foo(){
2 int arr[5],tmp=1,i=0;
3
4 if(...){
5 if(...){
6 i = lib1();
7 }else{
8 i = lib2();
9 }

10 //assert(0 ≤ i ≤ 4); HA10

11 tmp = 0;
12 }else{
13 tmp = lib3();
14 }
15
16 if(i < tmp)
17 arr[i]=0; A17

18 else
19 arr[i]=1; A19

20 }

21 void bar(int t1){
22 int n,j,arr[5],tmp=1;
23
24 n = lib1();
25 if(...){
26 n = lib2();
27 t1 = t1 / n; D27

28 }else{
29 t1 = 10 / n; D29

30 }
31 //assert(n!=0); SA31

32 tmp = 0;
33
34 j = lib2();
35 //assert(0 ≤ j ≤ 3); HA35

36
37 t1 = arr[j]; A37

38 j++;

39 tmp = arr[j]; A39

40 }

(1) lib1 , lib2 , and lib3 are library functions whose code is not available for static analysis and their
return-type is signed int.
(2) Ellipsis (...) indicates the code omitted for simplifying the example.

Figure 3.1: Alarm examples with their repositioning

the entry and exit of the node also appear on the path. Therefore, paths from a program point
p to a program point q are same as the paths from the node corresponding to p to the node
corresponding to q.

A node d dominates a node n if every path from the Start node to n also passes through d. On
similar lines, a program point p1 dominates a program point p2 if every path from entry(Start)
(i.e., the program entry) to p2 contains p1. A program point p1 post-dominates a program point
p2 if every path from p2 to exit(End) (i.e., the program exit) contains p1.

3.2.2 Motivating Example
Consider the C code example in Figure 3.1 adapted from a real-life embedded system. The
code is simplified considerably but it is still sufficiently rich to illustrate repositioning of alarms.
The example includes two functions, foo and bar , independent of each other. Analyzing the
code for two commonly checked categories of runtime errors, array index out of bounds (AIOB)
and division by zero (DZ), using a deep static analysis tool such as Polyspace Code Prover [1]
or Frama-C [43] generates six alarms. We use notations An and Dn, respectively, to denote
an alarm at line n corresponding to AIOB and DZ. The alarms are generated because values
returned by the calls to library functions are treated as unknown by the analysis tool. The alarms
are reported at the locations where run-time errors are likely to occur. We refer to these tool
generated alarms as original alarms and their locations as original locations.
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Definition 3.2.1 (Alarm Condition). Given an alarm φ, assuming the program point of φ is
reachable, the alarm condition of φ is a formula which is true if and only if φ is a false positive.

�

For example, the alarm condition of A17 (resp. D27) shown in Figure 3.1 is i ≥ 0 && i ≤ 4
(resp. n != 0): this formula (condition) is true if and only if the alarm is a false positive. Note
that the alarm condition of any alarm is a semantically unique formula. For an alarm φ, we use
cond(φ) to denote its alarm condition.

Definition 3.2.2 (Similar Alarms). Two alarms φ and φ′ are called similar if and only if cond(φ)⇔
cond(φ′). �

For example, alarms A17 and A19 in Figure 3.1 are similar.

Definition 3.2.3 (Cause Point of an Alarm). An assignment statement is said to be a cause point
of an alarm if the values assigned in this statement directly or indirectly reach to the variable(s)
in the alarm condition, and these values are a reason for generating the alarm. �

In other words, the statements in which the unknown (over-approximated) or unsafe values
relevant to the static analysis originate and result in generation of an alarm are called cause
points of the alarm [154]. For example, the assignment statements at lines 6 and 8, involving the
calls to library functions, are cause points of A17 and A19. The values returned by the calls to
library functions are treated as unknown by the analysis tool, and these values ultimately result
in generation of the two alarms.

Definition 3.2.4 (Dominant and Follower Alarms). An alarm φ1 is called a dominant alarm of
an alarm φ2 if, whenever φ1 is a false positive, φ2 is also a false positive. When an alarm φ1 is
dominant alarm of an alarm φ2, φ2 is called a follower alarm of φ1. �

State-of-the-art clustering techniques [124, 150, 223], which aim to reduce the number of
alarms, group alarms based on their similarity or correlation. These techniques achieve the re-
duction by identifying dominant and follower alarms, and grouping each dominant alarm together
with its follower alarms. The clustering techniques are, however, unable to group similar alarms
A17 and A19 in Figure 3.1, because the alarms are reported in the two different branches of the if
statement at line 16 and hence neither of them can be identified as a dominant alarm for the other.
In this case, both A17 and A19 get reported as dominant alarms. Similarly, D27 and D29, that
are similar, do not get grouped together because they are reported in the two different branches
of the if statement at line 25. Furthermore, these two alarms are caused by different reasons: the
assignments at lines 26 and 24 respectively.

To overcome the above described limitation of alarms clustering techniques, Gehrke et al.
[71] use propagation of alarm conditions. First, alarm conditions of original alarms are propag-
ated backward along the control flow, and the propagated conditions are used to create new
alarms at locations different from the original locations. Later, alarm conditions of the newly cre-
ated alarms, propagated forward along the control flow, are used to remove the original alarms.
However, as new alarms are created when no more upward propagation of the conditions is pos-
sible, the number of alarms reported finally can increase. For example, forA17 andA19 in Figure
3.1 the approach creates three new alarms: two at locations immediately after lines 6 and 8, and
one immediately before line 13. Also, applying this approach to D27 and D29 does not help in
reducing their number. Moreover, the locations of newly created alarms are different from the
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locations of the errors they detect. Therefore, when a newly created alarm denotes an error, it
requires user’s effort to locate the actual error program point.

Our approach to reposition alarms with the two goals (Section 3.1) is motivated by the work
of Gehrke et al. [71]. The approach overcomes the following limitations of state-of-the-art alarms
clustering techniques [71, 124, 150, 223]: (1) group similar alarms that the techniques fail to
group, (2) report alarms closer to their causes, and (3) report traceability links from the newly
created (repositioned) alarms to their corresponding original alarms. We first describe the ap-
proach proposed using examples of alarms shown in Figure 3.1.

3.2.3 Hoisting of alarms
Consider the similar alarms A17 and A19: both are AIOB alarms and based on the same variable
i. These two alarms get generated because the values assigned to i at lines 6 and 8 are unknown.
As the two alarms have the same alarm condition and the same cause points, they can be merged
together. The new alarm after their merging can be created at line 10 where the paths coming
from the two cause points meet for the first time. We call such a newly created alarm repositioned
alarm, and denote it using assertion whose condition is same as the condition of the alarm. The
repositioned alarm created for A17 and A19 is shown as an assertion HA10, where cond(HA10)
is i ≥ 0 && i ≤ 4. During the repositioning of A17 and A19, the effect of the else branch at
line 12 is ignored, because (1) value of i is 0 if the else branch at line 12 is taken (due to the
assignment at line 2) and the alarms A17 and A19 are safe due to this value; and (2) we are not
interested in the scenarios in which the alarms are guaranteed to be safe.

We refer to repositioning of an alarm to a program point earlier in the code as hoisting, and
an alarm resulting after the repositioning as a hoisted alarm. The hoisting of A17 and A19 at line
10 is safe, because HA10 is a false positive if and only if A17 and A19 are false positives. Thus,
reporting HA10 instead of A17 and A19 is sufficient for error detection.

Note that hoisting of A17 and A19 is also possible and safe at line 15, however we prefer
the hoisting at line 10, because the alarm reported at line 10 is closer to its cause points at lines
6 and 8: recall that we also aim to reduce backward code traversals performed during manual
inspections of alarms. For example, inspecting a repositioned alarm at line 15 (or even A17 or
A19) requires traversing the code from line 15 backwards through the then branch to assignments
in lines 6 and 8, and through the else branch at line 12 back to the assignment at line 2. Inspecting
the hoisted alarm HA10 eliminates the need of inspecting the else branch. The gain achieved due
to eliminating such code traversals, can be even bigger when the original and hoisted alarms
belong to different functions.

Note that the possible hoisting of A17 and A19 closest to their cause points, is immediately
after the assignments at lines 6 and 8. However, doing so results in two repositioned alarms and
it does not allow us to reduce the number of alarms. Thus, we prefer hoisting A17 and A19 at
line 10 and this hoisting is optimal considering the two alarms repositioning goals. Such alarms
repositioning not only reduces the number of alarms but also reduces code traversals, to some
extent, performed during the manual inspections.

We stress that, in the absence of either A17 or A19, the other alarm cannot be safely hoisted
to a location earlier in the code (e.g. to line 15), as the hoisting is not outcome preserving: the
hoisted alarm can represent an error while the original alarm being a safe point.

We describe another example of alarms hoisting by referring to A37 and A39 that are similar.
State-of-the-art clustering techniques fail to identify any one of them as a dominant alarm for
the other due to the increment operation at line 38, resulting in reporting of both the alarms as
dominant alarms. We observe that both the alarms can be safely merged into a single alarm
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repositioned at line 35, denoted by HA35. Note that cond(HA35), i.e. j ≥ 0 && j ≤ 3, is
such that HA35 is a false positive if and only if A37 and A39 are false positives. In this scenario,
the repositioning allows to reduce the number of alarms by one. Furthermore, it also eliminates
inspecting the second alarm, which requires considering the effect of the increment operation at
line 38. The saving achieved in inspection effort can be considerable if the code at the three lines
37-39 appear in different functions.

3.2.4 Sinking of alarms
Hoisting of alarms achieves both the repositioning goals. However, it may not always help
to merge alarms which can be merged together for reducing their number. For example, the
original alarms D27 and D29 are candidates for repositioning as they are similar and also they
appear in different branches of the if statement at line 25. They cannot be merged and hoisted
before the if statement at line 25 as doing so misses capturing the effect of the cause point at line
26. In such cases, repositioning them later in the code at line 31 allows to merge them together
while capturing the effect of both the cause points at lines 24 and 26. This repositioning helps
to reduce the number of alarms by one. The alarm after the repositioning is shown as SA31, and
cond(SA31) is n 6= 0. This repositioning is safe, because SA31 is a false positive if and only if
D27 and D29 are false positives.

We refer to this type of repositioning down the control flow as sinking of alarms, and a re-
positioned alarm resulting after the sinking as sunk alarm. Since there can exist multiple program
points for safe sinking of alarms (as it is the case at line 31 onwards for alarms D27 and D29),
we select the highest program point where paths coming from the alarms meet for the first time
(i.e., at line 31 for D27 and D29). The selection of the highest program point is to report sunk
alarms closer to their corresponding original alarms. Note that although the sinking reduces the
number of alarms by one (as per the primary goal), the sunk alarm SA31 is further away from the
alarm cause points. Thus, we perform sinking of alarms only if it reduces more alarms than their
hoisting.

3.2.5 Maintaining Traceability Links
In the repositioning technique, as the locations of repositioned alarms are different from locations
of errors detected by the alarms, we maintain traceability links between a repositioned alarm
and its corresponding original alarm(s). These links will be explored by users only when a
repositioned alarm is found to uncover an error during manual inspection and a correction is
needed at the program point(s) of its corresponding original alarms.

3.3 Technique Overview
This section provides overview of our alarms repositioning technique. We begin by defining a
few terms that we use to describe the technique.

3.3.1 Definitions
Similarly to available and anticipable expressions [100, 163], we define available alarm con-
ditions and anticipable alarm conditions. We use notation φp to denote an original alarm φ
reported at a program point p.
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Definition 3.3.1 (Available Alarm Conditions). An alarm condition c is available at a program
point p, if every path from the program entry to p contains an alarm φq with c as its alarm
condition, and the point q is not followed by an assignment to any variable in c on any path from
q to p. �

For example, in Figure 3.1, condition n 6= 0 is an available alarm condition at all the program
points after entry(n32) due to the alarms D27 and D29.

Definition 3.3.2 (Anticipable Alarm Conditions). An alarm condition c is anticipable at a pro-
gram point p, if every path from p to the program exit contains an alarm φq with c as its alarm
condition, and the point q is not preceded by an assignment to any variable in c on any path from
p to q. �

For example, in Figure 3.1, condition i ≥ 0 && i ≤ 4 is an anticipable alarm condition at
entry(n13), exit(n6), and exit(n8) due to the alarms A17 and A19.

Definition 3.3.3 (Safe Repositioning of Alarms). A repositioning (hoisting or sinking) of a set
of original alarms S, resulting in a set of repositioned alarms, is said to be safe if the following
holds: each repositioned alarm is a false positive if and only if its corresponding original alarms
in S are false positives. �

3.3.2 Repositioning Technique
To perform repositioning of alarms, discussed in the previous section, we design a two step
static analysis technique as described next. In our technique, we accept all the tool-generated
(original) alarms as input, and do not explicitly identify groups of similar alarms prior to their
repositioning.

3.3.2.1 Intermediate Repositioning

In the first step, alarm condition of every original alarm φ reported at p is safely hoisted at the
highest hoisting point along every path that reaches p. The highest hoisting point on a path is
identified as the program point qh such that cond(φ) is anticipable at qh but the same condition
is no longer anticipable at any program point just before qh. Thus, this step results in hoisting
an alarm condition closer to its cause points, but it can also result in hoisting the same condition
at multiple locations. For example, the alarm condition i ≥ 0 && i ≤ 4 of alarms A17 and A19

in Figure 3.1 gets hoisted at two locations: exit(n6) and exit(n8). This step discards the third
hoisting possible at entry(n13), because the hoisted condition (repositioned alarm) is a false
positive: the value of i at this point is always 0 (due to the assignment at line 2) and the hoisted
condition never evaluates to false. Note that the repositioning obtained after this step is not
final and it requires improvement. Thus, we refer to it as intermediate repositioning. Section 3.5
describes this first step in detail.

3.3.2.2 Improvement of the Intermediate Repositioning

This step improves the intermediate repositioning by merging hoisted alarm conditions that are
candidates for sinking. In this step, available alarm conditions are computed from alarm condi-
tions hoisted in the intermediate repositioning. For every available alarm condition c computed
at a program point p, we also compute exactly one program point pd to be associated with c. The
associated point pd is the highest program point among the program points where c is available
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and their nodes dominate the node of p. The point pd is used to reposition c during the final
repositioning.

To compute the associated point pd for an available condition c, initially c is associated with
the single program point at which it gets generated: a hoisting location from the intermediate
repositioning. Later, at a meet-program point pm where c is observed to have two or more
different program points associated with it, the association of c is updated to pm. With this
operation we guarantee that, for every condition c available at a program point p, there exists
only one program point associated with c and the node of the associated point dominates the
node of p.

For example in Figure 3.1, c := i ≥ 0 && i ≤ 4 gets generated as available alarm condition
at the hoisting locations exit(n6) and exit(n8) in the intermediate repositioning example (refer
Section 3.3.2.1). At its generation point exit(n6) (resp. exit(n8)), c gets associated with the same
program point. As entry(n11) is a meet point where c is available and also has those two program
points exit(n6) and exit(n8) associated with it, the association of c is changed to entry(n11). The
location entry(n11) associated with c is used later to reposition the condition c finally, described
in Section 3.5.

3.4 Intermediate Repositioning
In this section, we describe performing the first step of the repositioning technique, i.e., the inter-
mediate repositioning of alarms (Section 3.3.2.1). We first describe computation of anticipable
alarm conditions from the alarms input for repositioning. The computation of anticipable alarm
conditions is using a backward data flow analysis. Later, we describe obtaining the intermediate
repositioning—temporary hoisting of alarms—using results of the backward analysis, i.e., the
anticipable alarms conditions computed.

3.4.1 Anticipable Alarm Conditions Analysis
Given CFG of a program and original alarms set Φ, this backward data flow analysis computes
anticipable alarm conditions (antconds). We call this analysis antconds analysis. For every
antcond c computed at any program point, antconds analysis also computes the input alarms,
Φ′ ⊆ Φ, which contribute to anticipability of c at that point. We refer to these alarms Φ′ as
related original alarms (rel-alarms) of antcond c. The rel-alarms are used to compute traceability
links between a repositioned condition and its corresponding original alarm(s). Henceforth, in
this chapter, we use repositioned condition to refer to an alarm repositioned in the intermediate
or final repositioning, to distinguish it from the original alarms.

3.4.1.1 Notations

Let P be the set of all program points, i.e., entry(n) and exit(n) of every node n in the CFG
of the program are elements of P. Let V be the set of variables in the program, and C be the
set of all conditions that can be formed using program variables, constants, and arithmetic and
logical operators. We use tuple 〈c, φ〉 to denote an antcond c ∈ C along with one of its rel-alarms
φ ∈ Φ. Thus, the values computed by antconds analysis at a program point are given by a subset
of Lb = C× Φ. For a given set S ⊆ Lb, we define the following functions.

• condsIn(S) = {c | 〈c, φ〉 ∈ S}, returns all antconds in S; and
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• tuplesOf (c, S) = {〈c, φ〉 | 〈c, φ〉 ∈ S}, returns all tuples of a given antcond c ∈ S.

• alarmsOf (c, S) = {φ | 〈c, φ〉 ∈ S}, returns all rel-alarms of c ∈ S, i.e., all original alarms
associated with c.

For a given c ∈ C, and C ′ ⊆ C, as shown below we define function getImplyingCond(c, C ′)
to return a unique condition that implies c.

getImplyingCond(c, C ′) =

{
getUniqueCond(c, C ′) c′ ∈ C ′, c′ ⇒ c

c otherwise

getUniqueCond(c, C ′) = getFirstLexicOrdered({ c1 | c1 ∈ C ′, c1 ⇒ c, @c2 ∈ C ′, c2 ⇒ c1})

where the function getFirstLexicOrdered(X) is assumed to return the first element when
elements in set X are ordered lexicographically.

3.4.1.2 Lattice

Antconds analysis aims at computing subsets of Lb flow-sensitively at every program point p ∈ P.
Let B′ be the powerset of Lb. To define the lattice of antconds analysis, we introduce an artificial
top element >. We assume that the element has the following properties: condsIn(>) = C; and
∀c ∈ C: alarmsOf (c,>) = ∅.

Let B = B′ ∪ {>}. The lattice of the values computed by antconds analysis is given by
〈B,v,>,⊥,u〉, where (a) the top and bottom of the lattice respectively are > and ⊥ = ∅; and
(b) the partial order v and the meet operation u are as described below.

Given X,Y ∈ B,X v Y iff

condsIn(X) ⊆ condsIn(Y ) ∧ (∀c ∈ condsIn(X): alarmsOf (c,X) ⊇ alarmsOf (c, Y )).

In other words, when Y 6= >, X v Y iff ∀c ∈ condsIn(X): 〈c, φ〉 ∈ X ⇒ 〈c, φ′〉 ∈ Y ∧
alarms(c,X) ⊇ alarmsOf (c, Y ). When Y = >, X v Y holds by the definition of >. As the
partial order is based on union and intersection operations, it is easy to see that the partial order
v is reflexive, antisymmetric, and transitive. We use uB to denote the meet operation u, and is
defined by Equation 3.1.

Given X,Y ∈ B,

X uB Y =
⋃

c∈
(

condsIn(X) ∩ condsIn(Y )
)tuplesOf (c,X) ∪ tuplesOf (c, Y ) (3.1)

The meet operation (Equation 3.1) first computes intersection of antconds in X and Y , and
then for each of the antconds in the result, it performs union of its rel-alarms (i.e., union of its
tuples). This meet operation is commutative, associative, and idempotent. The meet uB and join
u operations are dual to one another with respect to order inversion.

For the lattice defined above, the following holds:
∀X ∈ B: X u > = X, X t > = >, X u ⊥ = ⊥, X t ⊥ = X .
As the meet uB is commutative, associative, and idempotent; the partial orderv is reflexive,

antisymmetric, and transitive; and there exists the bottom element ⊥, all strictly descending
chains are finite [100].
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Let m,n ∈ N; c, c′ ∈ C; φ, φ′ ∈ Φ; X ∈ B; and Y ⊆ C.

AntOutn =


∅ n is End nodel

m∈succ(n)
B

AntInm otherwise (3.2)

AntInn = Genn(AntOutn) ∪ (AntOutn \ Killn(AntOutn)) (3.3)

Killn (X) = { 〈c, φ〉 | 〈c, φ〉 ∈ X, n contains a definition of an operand of c } (3.4)

Genn(X) = Gen’n(X) ∪ DepGenn(Killn(X)) (3.5)

Gen’n(X) = { process(φ, condsIn(X)) | alarm φ ∈ Φ has been reported for n } (3.6)

process(φ, Y ) = 〈getImplyingCond(cond(φ), Y ), φ〉 (3.7)

DepGenn(X) =


{
〈wprecond(n, c), φ〉

∣∣∣∣∣ 〈c, φ〉 ∈ X,
wprecond(n, c) is computable

}
n is an assignment
node

∅ otherwise
(3.8)

Figure 3.2: Data flow equations of the antconds analysis.

3.4.1.3 Data Flow Equations

The required initialization of the data flow values at every program point is with >. Figure 3.2
shows data flow equations of antconds analysis in intraprocedural setting: handling of the call
nodes is not shown for simplicity of the formalization. We use AntInn and AntOutn, in Equations
3.3 and 3.2, to denote antconds computed by the analysis at the entry and exit of a node n respect-
ively. Equation 3.2 indicates that, ∅ is the value computed at exit(End) (boundary information),
and values at the exit of every other node n, i.e., AntOutn, are computed by performing meet
of the values computed at the entry of every successor of n (shown using uB ). The solution
computed by these equations is the maximum fixed point solution.

Equation 3.6 shows processing of every alarm φ reported for the statement of a node n, to
generate cond(φ) as an anticipable condition with φ as its rel-alarm. Equation 3.7 denotes that the
alarm condition cond(φ) is generated as an antcond only if no antcond in condsIn(AntOutn)—the
antconds flowing in at the exit of node n—implies cond(φ). In the other case, i.e., when cond(φ)
is implied by an antcond cin flowing in at the exit of node n, cond(φ) is not generated as an
antcond. However in this case, φ is associated with cin as its rel-alarm. This processing allows
to compute an alarm φ at node n as a follower of the alarms due to which the implying condition
cin is an antcond at the exit of n.

Equation 3.8 denotes computation of antconds transitively, i.e., antconds at a node are also
generated based on antconds that flow-in at the exit of the node. This equation assumes that the
function wprecond(n, cp) returns the weakest precondition for (1) the statement of a given node
n, and (2) a postcondition cp. Note that, an antcond is transitively generated from an antcond
c that gets killed at an assignment node n. Therefore, we compute weakest preconditions only
for assignment nodes, and transitively generate antcond from a killed antcond c only if weakest
precondition can be computed for c. We compute antconds transitively to group more alarms
together: if antconds are not computed transitively, some of the alarms cannot be grouped through
repositioning. For example, A37 and A39 in Figure 3.1 cannot be grouped together through their
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repositioning at exit(n34) (Section 3.2.3), if antconds are not computed transitively (at node n38).
In this case, the repositioning of A37 (resp. A39) would be at exit(n34) (resp. exit(n38)).

Equations 3.5 and 3.4 respectively compute antconds to be generated and killed at a node,
based on antconds that flow in at the exit of the node. Hence, these equations indicate that
the computation of antconds by these equations is non-constant. Moreover, since antconds are
computed by taking into account implication and transitivity of the conditions, the flow function
(framework) to compute antconds (Equation 3.3) is non-separable3.

The flow functions (data flow equations) shown in Figure 3.2 are monotonic4. Monotonicity
of the flow function that computes values at the exit of nodes (Equation 3.2), follows from the
definition of the meet operation uB . Therefore, below we describe monotonicity of the flow
function that computes values at the entry of the nodes (shown by Equation 3.3). To prove this,
we need to prove, ∀X,Y ∈ B : X v Y ⇒ (Genn(X) ∪ (X \Killn(X))) v (Genn(Y ) ∪ (Y \
Killn(Y ))). Consider an antcond c ∈ condsIn(X). Therefore, c ∈ condsIn(Y ) (because X v
Y ). If c gets killed at a node n, it will be removed along with its rel-alarms from both X and Y .
Moreover, if c implies the condition of an alarm at node n, the same alarm will get added as a
rel-alarm of c in both X and Y . On similar lines, for the other possibilities with c—transitivity
and no effect of node n on c—there will be same effect on both X and Y by the flow function.
Moreover, when a new antcond is generated from an alarm reported at n (when no flowing-in
antcond implies the alarm’s condition), the same antcond gets added, to X and Y , with the same
alarm as its rel-alarm. Therefore, for every c ∈ condsIn(Y ), the flow function has same effect on
both X and Y , indicating (Genn(X) ∪ (X \ Killn(X))) v (Genn(Y ) ∪ (Y \ Killn(Y ))).

3.4.2 Intermediate Repositioning of Alarms
Recall the intermediate repositioning (Section 3.3.2.1) is implemented by hoisting alarm condi-
tion of every alarm temporarily at the highest program point in every path reaching to the alarm
program point. The highest program point for hoisting is identified as the point before which
the alarm condition is no longer anticipable. We distinguish between the two possible cases of
identifying the highest hoisting points.

3.4.2.1 Case 1 (Hoisting at Entry of Nodes)

An alarm condition c anticipable at entry(n) is not anticipable at exit(m), where m is a prede-
cessor of n and also a branching node (i.e. the statement of m is a controlling condition). This
case occurs when a branch coming out of m exists where c is not anticipable at the start of the
branch. In this case, the antcond c is hoisted at entry(n). Alternatively, the antconds to be hoisted
at entry(n) are given by

Hoist’entry(n) = condsIn (AntInn) \
⋂

m∈pred(n)

condsIn (AntOutm) (3.9)

For example, condition i ≥ 0 && i ≤ 4 of A17 (and A19) in Figure 3.1 is anticipable at
entry(n13) but not at exit(n4), and n4 is predecessor of n13. Thus, the condition is hoisted at
entry(n13).

3A flow function f : L 7→ L is separable iff it is a tuple < 〈f̂α, f̂β , ..., f̂ω〉 of component functions f̂ : L̂ 7→ L̂. If
f̂ is of the form L 7→ L̂, then f is non-separable [100].

4Flow functions F are monotonic if ∀f ∈ F, ∀X,Y ∈ B : X v Y ⇒ f(X) v f(Y ).
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3.4.2.2 Case 2 (Hoisting at Exit of Nodes)

A condition c is anticipable at exit(n) but not at entry(n) when (1) the node n contains a definition
of an operand of c i.e. anticipability of c is killed by n, and (2) the node n does not generate any
antcond transitively from c. In this case, we hoist the condition c at exit(n). That is, the alarm
conditions to be hoisted at exit(n) are given by

Hoist’exit(n) = {c | 〈c, φ〉 ∈ Killn (AntOutn) , DepGenn({〈c, φ〉}) = ∅} (3.10)

As an example of the above hoisting case, the alarm condition of A17 (and A19) in Figure
3.1, i ≥ 0 && i ≤ 4, is anticipable at exit(n6) but not at entry(n6) and n6 does not generate any
anticipable alarm condition transitively. Thus, the condition gets hoisted at exit(n6). Similarly,
the same condition also gets hoisted at exit(n8).

3.4.2.3 Discarding Redundant Hoisting

Consider the hoisting of alarm condition of A17 and A19, i.e., i ≥ 0 && i ≤ 4, at entry(n13)
(Section 3.4.2.1). The hoisted alarm condition always holds at the hoisting location due to the
value 0 assigned to i at line 2. We deem this hoisting to be redundant and discard it. Formally,
equations 3.11 and 3.12 compute the non-redundant hoisting of alarm conditions at entry(n) and
exit(n), where alwaysTrue(c, p) is true only if the condition c always holds at p.

Hoistentry(n) =
{
c
∣∣ c ∈ Hoist’entry(n), alwaysTrue(c, entry(n)) 6= true

}
(3.11)

Hoistexit(n) =
{
c
∣∣ c ∈ Hoist’exit(n), alwaysTrue(c, exit(n)) 6= true

}
(3.12)

3.4.2.4 Algorithm

The intermediate repositioning of alarms—hoisting at the entry and exit of all the nodes—is
performed by processing every node n ∈ N using the equations 3.11 and 3.12.

3.4.2.5 Computing Traceability Links

Recall that function alarmsOf (c, S) returns rel-alarms of c in S ∈ B (Section 3.4.1.1). The
traceability links are generated from a hoisted condition c in Hoistentry(n) (resp. Hoistexit(n)) to
its corresponding rel-alarms given by alarmsOf (c,AntInn) (resp. alarmsOf (c,AntOutn)).

3.4.2.6 Intermediate Repositioning Example

Following is the intermediate repositioning obtained for alarms in Figure 3.1.

1. i ≥ 0 && i ≤ 4 is hoisted at exit(n6) and exit(n8), with bothA17 andA19 as its rel-alarms.

2. n 6= 0 is hoisted at exit(n26) (resp. entry(n29)) with D27 (resp. D29) as its rel-alarm.

3. j ≥ 0 && j ≤ 4 is hoisted at exit(n34) with A37 as its rel-alarm.

4. Antcond j ≥ −1 && j ≤ 3, that gets transitively generated from antcond j ≥ 0 && j ≤ 4
that flows in at exit(n38), is hoisted at exit(n34) with A39 as its rel-alarm. The antcond
j ≥ 0 && j ≤ 4 that is killed at line 38 is not hoisted at exit(n38), because an antcond c
killed at node n is not hoisted at exit(n) if a new antcond is transitively generated from c
at the same node (Equation 3.10).
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1 void f1(){
2 int i=lib1(), j=lib2(), a[5];
3
4 if(...){
5 arr[i] = 1; A5

6 j = j + 2;
7 }else{
8 i = lib3();
9 arr[i] = 3; A9

10 }
11 }

12 SA12 //assert(0 ≤ i ≤ 4);
13
14 //assert(0 ≤ j ≤ 4); HA14

15 i = i + 1;
16
17 arr[j] = 0; A17

18
19 i = lib();
20 }
21

Figure 3.3: Examples to illustrate the requirement of (a) consistency in computation of antconds
and avconds, and (b) computing repositioning conditions for avconds.

The two conditions hoisted in each of the cases (1) and (2) belong to different branches of an if
statement and are candidates for merging (sinking) during the improvement step (described in the
next section). The two conditions hoisted in the cases (3) and (4) are at the same program point
(exit(n34)), and these two conditions get merged into a single condition during the improvement
step.

3.5 Improvement of the Intermediate Repositioning
In this section, we describe performing the second step of the repositioning technique, i.e., im-
provement of the intermediate repositioning. We first describe computation of available alarm
conditions from the conditions (alarms) hoisted in the intermediate repositioning. The computa-
tion of available alarm conditions is done using a forward data flow analysis. Similar to antconds
analysis (Section 3.4.1), for each of the available alarm conditions (called avconds), we compute
original alarms (rel-alarms5) that are used later to create traceability links from final repositioned
alarms to their corresponding original alarms. Then, we describe the steps to create repositioned
alarms using the results of this forward analysis and to postprocess the repositioned alarms.

3.5.1 Consistency in Antconds and Forward Analyses
Recall that the antconds are computed transitively (Section 3.4.1.3). The purpose of the trans-
itive computation of antconds is to merge/group alarms that are always on the same paths and
variable(s) in their conditions are modified between their program points. For example, recall
the repositioning of the two similar alarms A37 and A39 at exit(n34), shown in Figure 3.1 and
discussed in Section 3.2.3. If antconds are not computed transitively, the two similar alarms A37

and A39 in Figure 3.1 cannot be merged and repositioned at exit(n34), and their number cannot
be reduced from two to one. Hence, the antconds are computed transitively (in the backward
direction). If antconds are computed transitively, avconds also need to be computed transitively
(in the forward direction): the computation of antconds and avconds need to be consistent. We il-
lustrate this requirement—consistency in computation of antconds and avconds transitively—by
referring to repositioning of A17 shown in Figure 3.3. The conditions hoisted in the interme-
diate repositioning, corresponding to A17 are: (a) −2 ≤ j ≤ 2 hoisted at entry(n5), and (b)

5In Section 3.4.1, we used rel-alarms to refer to related original alarms of an antcond. We use the same term to refer
to the original alarms computed for an avcond.
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0 ≤ j ≤ 4 hoisted at entry(n8). During forward avconds analysis, if avconds are not computed
transitively, the condition 0 ≤ j ≤ 4 will not get computed as an avcond at entry(n15) and even
at entry(n17). As a result, the two hoisted conditions (from the intermediate repositioning) will
not get merged together, and therefore, each of them will be a separate repositioned alarm in the
final repositioning (steps to obtain final repositioning are discussed in Section 3.5.4). If avconds
are computed transitively, 0 ≤ j ≤ 4 will be an avcond at entry(n15) and later program points.
Later, this avcond gets used to reposition 0 ≤ j ≤ 4 at entry(n15), i.e., A17 gets repositioned at
entry(n15) (shown as HA14). This indicates that a single alarm can get repositioned at more than
one location if antconds required to obtain intermediate repositioning are computed transitively,
but avconds are not.

3.5.2 Computation of Avconds with Their Corresponding Rel-alarms
In order to compute traceability links from final repositioned alarms to their corresponding ori-
ginal alarms, for each of the avconds computed at a program point, its corresponding rel-alarms
need to be computed. As this forward analysis computes avconds with their corresponding rel-
alarms, we call it rel-alarms analysis. First we describe a data flow formalization of rel-alarms
analysis: computing avconds with their corresponding rel-alarms. Then, we describe a method
to create repositioned alarms using the analysis results. We stress that avconds and their cor-
responding rel-alarms are computed based on the conditions hoisted and their locations in the
intermediate repositioning, rather than the original alarms input for repositioning and their loca-
tions.

3.5.2.1 Formalization of Rel-alarms Analysis

We present formalization of the forward analysis (rel-alarms analysis) using the notations used
to describe antconds analysis (Section 3.4.1) and performing intermediate repositioning (Section
3.4.2). The lattice of the values computed by rel-alarms analysis is the same as the lattice of
values computed by antconds analysis (Section 3.4.1.2). Hence, rel-alarms analysis computes
subsets of B flow-sensitively at every program point and has the meet operation similar to Equa-
tion 3.1.

Figure 3.4 presents data flow equations of rel-alarms analysis that computes avconds trans-
itively in an intraprocedural setting, along with their corresponding rel-alarms. The required
initialization of the data flow values at every program point is with >. Therefore, the solution
computed by this analysis is the maximum fixed point solution. We use fwdInn and fwdOutn, to
denote avconds computed with their corresponding rel-alarms, respectively, at the entry and exit
of every node n (Equations 3.13 and 3.14). Figure 3.5 illustrates the computation of fwdOutn.

Equations 3.15 and 3.17 indicate that an avcond is generated from every condition hoisted in
the intermediate repositioning. Similar to Equation 3.7 (Section 3.4.1.3), Equation 3.15 does not
generate an avcond for c ∈ Hoistentry(n) when an avcond in condsIn(fwdInn) implies c. However,
such implication handling is not needed in Equation 3.17, because the antconds are hoisted at
the exit of a node only when the node stops anticipability of those conditions. Equation 3.18
computes avconds transitively, where it assumes function postcond(n, cp) to return the strongest
postcondition for the statement of a given node n, and a given precondition cp.

On similar lines to Equations 3.5 and 3.4 of antconds analysis, Equations 3.15 and 3.16
respectively compute avconds to be generated and killed at a node, based on avconds that flow
in at the entry of the node. Hence, these equations indicate that the computation of avconds by
these equations is non-constant. Moreover, since avconds are computed by taking into account
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Let m,n ∈ N; c, c′ ∈ C; φ, φ′ ∈ Φ; X ∈ B; and Y ⊆ C.

fwdInn =


∅ n is Start nodel

m ∈ pred(n)
B

fwdOutm otherwise (3.13)

fwdOutn = fwdOut’n ∪ Genexit(n) (3.14)

fwdOut’n = (fwdIn’n \ Killn(fwdIn’n)) ∪ DepGen(fwdIn’n)

fwdIn’n = fwdInn ∪ Genentry(n)(fwdInn)

Genentry(n)(X) =

{
createTuple(c, condsIn(X), φ)

∣∣∣∣∣ c ∈ Hoistentry(n),

φ ∈ alarmsOf (c,AntInn)

}
(3.15)

createTuple(c, Y, φ) = 〈getImplyingCond(cond(φ), Y ), φ〉
Killn (X) = { 〈c, φ〉 | 〈c, φ〉 ∈ X, n contains a definition of an operand of c } (3.16)

Genexit(n) = { 〈c, φ〉 | c ∈ Hoistexit(n), φ ∈ alarmsOf (c,AntOutn) } (3.17)

DepGenn(X) =


{
〈postcond(n, c), φ〉

∣∣∣∣∣ 〈c, φ〉 ∈ X,
postcond(n, c) is computable

}
n is an assignment
node

∅ otherwise
(3.18)

Figure 3.4: Computing avconds with their corresponding related original alarms.

entry(n) node n exit(n)
fwdInn

Genentry(n)(fwdInn) DepGenn(fwdIn’n)

fwdIn’n

Killn(fwdIn’n)

fwdOut’n

Genexit(n)

fwdOutn

Figure 3.5: Processing of a node during (forward) rel-alarms analysis

implication and transitivity of the conditions, the flow function (framework) to compute avconds
(Equation 3.14) is non-separable. Similar to the flow functions of antconds analysis in Figure
3.2, the flow functions (data flow equations) shown in Figure 3.4 are monotonic.

3.5.2.2 Computation of Repositioned Alarms

To create repositioned alarms using results of rel-alarms analysis, we use a method similar to the
one we used to create repositioned alarms in the intermediate repositioning based on antconds.
This method to create repositioned alarms based on avconds, identifies the conditions that are
available at a program point but not immediately after it. That is, we identify avconds and the
program points where their availability stops, and use them to create repositioned alarms. In
addition to the avconds identified this way, as a special case, we also consider the avconds that
reach to exit(End) without getting killed at any program point. This method is discussed later in
Section 3.5.4.1.
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Let c be a condition available at a program point p but not immediately after it. Recall that
the intermediate repositioning is obtained by repositioning antconds at the locations before which
their anticipability is stopped (Section 3.4.2). However, in this improvement step, for a condition
whose availability stops after a program point p, we reposition c at the highest program point
pr, where (1) pr dominates p, and (2) the same condition c is available at pr and reaches from
pr to p. For example, consider alarm A17 shown in Figure 3.3. The conditions hoisted in the
intermediate repositioning, corresponding to it (A17), are: (a) −2 ≤ j ≤ 2 hoisted at entry(n5),
and (b) 0 ≤ j ≤ 4 hoisted at entry(n8). During rel-alarms analysis, due to transitive computation
of avconds, condition 0 ≤ j ≤ 4 reaches to exit(End) as an avcond. For this avcond reaching
at exit(End), we identify the program point pr where the same condition is available and pr
dominates exit(End). In this case, pr = entry(n15). Therefore, we reposition 0 ≤ j ≤ 4 at
entry(n15); the resulting repositioned alarm is shown as HA14.

Since we compute avconds transitively, an avcond c computed at a program point p can
be a transformed version of a condition cr available at the highest program point pr (where
we intend to reposition c). Thus, computing the highest program point pr requires taking into
account transitive computation of avconds. We illustrate this by referring to repositioning of
alarms A5 and A9 shown in Figure 3.3. The conditions hoisted in the intermediate repositioning,
corresponding to these two alarms, respectively are (a) 0 ≤ i ≤ 4 hoisted at entry(n5), and
(b) 0 ≤ i ≤ 4 hoisted at exit(n8). When avconds are computed transitively, due to these two
hoisted conditions in the intermediate repositioning, 0 ≤ i ≤ 4 gets computed as an avcond
entry(n15), and 1 ≤ i ≤ 5 as an avcond at exit(n15), each of them having A5 and A9 as their
rel-alarms. The avcond 1 ≤ i ≤ 5, transitively generated at exit(n15), gets propagated to and
killed at entry(n19). For the avcond 1 ≤ i ≤ 5 killed at entry(n19), if the transitivity is not
taken into account, the above method identifies exit(n15) as the location for its repositioning,
i.e., pr = exit(n15). However, the intended repositioning is at entry(n15). Note that avcond
1 ≤ i ≤ 5 at entry(n19) is a transformed version of avcond 0 ≤ i ≤ 4 at entry(n15). Therefore,
in order to create a repositioned alarm at entry(n15) (shown as SA12), the corresponding avcond
at that point needs to be identified.

Hence, to obtain the intended (final) repositioning using the above described method, the
code needs to be traversed backward to take into account transitivity of the avconds, and identify
the program points (locations) to reposition the avconds. To avoid these backward traversals,
we design an algorithm that automatically computes locations and conditions along with the
avconds, so that the killed avconds can be directly repositioned using these values (and without
performing backward code traversals). This algorithm is discussed in the next section.

3.5.3 Automated Computation of Repositioning Locations and Conditions
To eliminate the need to traverse the code backward, while computing the repositioning location
for each of the killed avconds at any program point, we compute the repositioning location and
condition for each avcond computed at any program point. Therefore, any avcond killed at a
program point can be repositioned using the values computed for it. For this purpose, we design
an algorithm that computes the following for each of the avconds, say c, computed at any program
point p,

• The program point pr that dominates p, and c is available at p through pr directly or
transitively: We refer to this program point pr as repositioning location of c.
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• The condition cr available at pr such that cr reaches to p as c, directly or transitively, (i.e., c
is a transformed version of cr at pr): we refer to this cr at pr as the repositioning condition
of c.

Thus, due to the transitivity in avconds computation, we compute the repositioning location
pr and condition cr for every avcond identified at any program point. These values are used later
to implement the final repositioning. We stress that,

• An avcond computed at any program point has exactly one repositioning location pr and
one repositioning condition cr associated with it (computed for it).

• Computing repositioning condition cr for an avcond c is not required if avconds are not to
be computed transitively (because in this case, cr is same as c).

• The associated values, cr and pr, for an avcond are computed based on the conditions
hoisted and their locations in the intermediate repositioning, rather than the original alarms
input for repositioning and their locations.

Below we describe an algorithm that computes the repositioning location and condition of
every avcond. We call this algorithm avconds analysis.

3.5.3.1 Notations

Let P be the set of all program points and C be the set of all conditions that can be formed using
program variables, constants, and arithmetic and logical operators. Let function f : C 7→ C× P,
map an avcond c ∈ C to its associated repositioning condition cr ∈ C and location pr ∈ P. We
write the condition cwith the associated values as tuple 〈c, cr, pr〉. Thus, the values computed by
avconds analysis at a program point are a subset of Lf , where Lf = {〈c, c′, q〉 | c ∈ C, f(c) =
〈c′, q〉}. Let init = {〈c,>p, c〉 | c ∈ C}, where >p is an artificial program point.

For a given set S ⊆ Lf we define the following function: condsIn(S) = {c | 〈c, cr, pr〉 ∈ S}.
That is, condsIn(S) returns all avconds in S. We define the following functions for a given set
S ⊆ Lf , and c ∈ condsIn(S).

• repCond(c, S) returns the repositioning condition associated with c, i.e., it returns cr where
〈c, cr, pr〉 ∈ S.

• repLoc(c, S) returns the repositioning location associated with c, i.e., it returns pr where
〈c, cr, pr〉 ∈ S.

Note that avconds computed by this analysis form a partially ordered set. However, the set
of program points that can be computed for any avcond as its repositioning location does not
form a partially ordered set. The relation among the program points—that can be computed
for an avcond—is successor of which is not antisymmetric. As a result, a partial order that is
reflexive, antisymmetric, and transitive, cannot be identified for the set of values computed by
this analysis: avconds with the intended repositioning locations and conditions. Therefore, we
do not call this analysis a data flow analysis, instead call it an algorithm. Although these values
do not form a lattice, this analysis/algorithm still serves the purpose of computation of avconds
with the intended values (discussed next).
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Let m,n ∈ N; c, c′, cr ∈ C; pr ∈ P; and X,Y ⊆ Lf .

AvInn =


∅ n is Start nodel

m ∈ pred(n)

n

F
AvOutm otherwise (3.19)

AvOutn = Genexit(n) ∪ AvOut’n (3.20)

Genexit(n) = { 〈c, c, exit(n)〉 | c ∈ Hoistexit(n) } (3.21)

AvOut’n = (AvIn’n \ Killn(AvIn’n)) ∪ DepGen(AvIn’n)

AvIn’n = AvInn ∪ Genentry(n)(AvInn)

Genentry(n)(X) =
{
〈c, c, entry(n)〉

∣∣ c ∈ Hoistentry(n), 〈c′, cr, pr〉 ∈ X, c′ 6⇒ c
}

(3.22)

Killn (X) = { 〈c, cr, pr〉 | 〈c, cr, pr〉 ∈ X, n contains a definition of an operand of c } (3.23)

DepGenn(X) =


{
〈postcond(n, c), cr, pr〉

∣∣∣∣∣ 〈c, cr, pr〉 ∈ X,
postcond(n, c) is computable

}
n is an assignment
node

∅ otherwise
(3.24)

X nuF Y =
⋃

c∈
(

condsIn(X) ∩ condsIn(Y )
){ mergeInfo(c, entry(n), X, Y ) } (3.25)

mergeInfo(c, pm, X, Y ) =


〈c, cr, pr〉 〈c, cr, pr〉 ∈ X, 〈c, c′r, p′r〉 ∈ Y, p′r = >p
〈c, c′r, p′r〉 〈c, cr, pr〉 ∈ X, 〈c, c′r, p′r〉 ∈ Y, pr = >p
〈c, c, pm〉 〈c, cr, pr〉 ∈ X, 〈c, c′r, p′r〉 ∈ Y, pr 6= p′r

〈c, cr, pr〉 〈c, cr, pr〉 ∈ X, 〈c, c′r, p′r〉 ∈ Y, pr = p′r (and cr = c′r)

(3.26)

Figure 3.6: Computation of repositioning locations and conditions for avconds.
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Figure 3.7: Processing of a node during avconds analysis

3.5.3.2 Computing Repositioning Locations using Avconds Analysis

Avconds analysis computes subsets of Lf flow-sensitively at every program point p ∈ P. We ini-
tialize the values at every program point with init. Then we apply the equations shown in Figure
3.6, until the fixed point is computed (similar to the maximum fixed point solution computed by
a data flow analysis). The equations transitively compute avconds in an intraprocedural setting,
along with their repositioning locations and conditions. AvInn and AvOutn denote avconds com-
puted with their associated values, respectively, at the entry and exit of a node n (Equations 3.19
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and 3.20). Figure 3.7 illustrates the computation of AvOutn. Equations 3.21 and 3.22 indicate
that an avcond is generated for every condition hoisted in the intermediate repositioning. At any
program point, the avconds computed by this analysis are same as the avconds computed by the
rel-alarms analysis in Section 3.5.2.1, with the only difference in the values associated with them.
When an alarm condition is generated as an avcond at a program point, the same program point
and the same condition is associated as the repositioning location and condition of the avcond
(Equations 3.21 and 3.22).

Now, we describe the computation of repositioning location pr and cr of each avcond c that
flows-in at a meet point, i.e., merging of associated values of c. At a meet point entry(n), the
computation of avconds with their associated values is shown by Equation 3.25. During this
computation, the repositioning location and condition of an avcond c are respectively updated to
entry(n) and c, only if the repositioning locations of c flowing-in via the two different paths at
the meet point are different and none of the two locations is >p. When one of the repositioning
locations is >p, the other repositioning location is associated with the avcond. In the other
case, i.e., when the repositioning locations of c flowing-in via the two different paths at a meet
point are same, the values associated with c remain unchanged. In this case, the values remain
unchanged, because, when the repositioning locations of c flowing-in via the two different paths
at a meet point are same, the repositioning conditions of c flowing-in via the two different paths
are also same. Hence, it can be seen that the computation at a meet point is independent of the
repositioning conditions of avconds: cr = c′r in Equation 3.25 is shown only for completeness.

Note that, the updates to the repositioning location and condition of an avcond c is only
when c is generated as an avcond or during merging of the values at a meet point (discussed
above). Therefore, with these updates, we ensure that the associated repositioning location pr
of an avcond c satisfies the following: pr dominates p, and c has availability through pr to p
directly or transitively, with cr being the version of c at pr. The values computed for every
avcond at any program point being unique, the values computed by avconds analysis at any
program point converge over multiple iterations, i.e., the fixed point gets computed. Therefore,
the analysis/algorithm terminates. We have discussed rel-alarms analysis and avconds analysis
separately only for simplicity of the analysis formalization and discussion. Both these analyses
can be implemented together.

3.5.4 Algorithm for Improvement of the Intermediate Repositioning
Algorithm 1 presents steps to improve the intermediate repositioning, i.e., performing final re-
positioning of alarms using results of the avconds analysis described above (Section 3.5.3) and
rel-alarms analysis (Section 3.5.2). The steps in the algorithm are described below.

3.5.4.1 Step 1 (Computation of Repositioned Conditions)

At each program point, we first select avconds whose associated values are used to perform final
repositioning. For every avcond c selected, (1) the repositioning condition cr of c is repositioned
at the repositioning location pr of c, and (2) a traceability link is created from the resulting
repositioned condition to each of the rel-alarms of c. We select avconds for the final repositioning
by processing every node n in the program using Equations 3.27 and 3.28.

Condsentry(n) = condsIn (Killn (AvIn’n)) (3.27)

Condsexit(n) = condsIn (AvOutn) \
⋂

s∈succ(n)

condsIn (AvIns) (3.28)
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Algorithm 1 Algorithm for Final Repositioning
global RC ;
procedure PERFORMREPOSITIONING

RC ← ∅;
/* Step 1 - computation of repositioned conditions (Section 3.5.4.1) */
for each node n ∈ N do

REPOSITION(Condsentry(n),AvIn’n, fwdIn’n);
REPOSITION(Condsexit(n),AvOutn, fwdOutn);

end for
/* Special case for the program End node */
REPOSITION(condsIn(entry(End)), AvInEnd, fwdInEnd);

/* Step 2 - simplification of the repositioned conditions (Section 3.5.4.2) */
RS ← ∅;
for each point p ∈ P do

C ← {〈c, p〉 | 〈c, p〉 ∈ RC};
RS ← RS ∪ SIMPLIFYCONDS(C);

end for

/* Step 3 - clustering of the repositioned conditions (Section 3.5.4.3) */
RE ← DISCARDFOLLOWERS(RS);

/* Step 4 - postprocessing for fallback (Section 3.5.4.4) */
Rf ← PERFORMFALLBACK(RE ,Φ); /* Algorithm 2 */

return Rf ; /* the final repositioned alarms */
end procedure

procedure REPOSITION(C, X , Y )
for each condition c ∈ C do

r ← 〈REPCOND(c,X), REPLOC(c,X)〉; /* Creation of new repositioned alarms */
RC ← RC ∪ {r};
for each φ ∈ ALARMSOF(c, Y ) do

CREATELINK(r, φ); /* Add a traceability link from r to φ (Section 3.5.4.1) */
end for

end for
end procedure

These equations (3.27 and 3.28) respectively compute the avconds that are no longer avail-
able at any program point immediately after the entry and exit of a node n. These equations are
on similar lines of the two cases in Section 3.4.2. The processing of every node through the two
equations ensures the following: (1) each avcond c generated at a program point p gets selected
for repositioning along every path starting at p and ending at the program exit except when it
transitively results into some other avcond, and (2) the selection along any such path is only once
and it occurs at the last program point on the path where c is available.
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As a special case, we select every condition c ∈ condsIn(entry(End)) for the repositioning,
because a few avconds like n 6= 0 in Figure 3.1 can reach the program end point, but not get
computed by either of the equations 3.27 and 3.28 for any program point.

In Algorithm 1, we use 〈c, p〉 to denote a repositioned condition (alarm) resulting after re-
positioning of condition c at point p. Note that the algorithm uses rel-alarms of every selected
avcond to create traceability links from the resulting repositioned condition. In Algorithm 1,
we assume that the call to function createLink(r, φ) creates a traceability link from a given re-
positioned alarm r to an original alarm φ. A map is used to maintain traceability links from a
repositioned alarm to its corresponding original alarms.

Below, we describe repositioning of the example alarms shown in Figure 3.1, obtained after
Step 1. This repositioning is obtained based on avconds computed from the hoisted conditions
in the intermediate repositioning (described in Section 3.4.2.6).

1. i ≥ 0 && i ≤ 4 is repositioned at entry(n11) both A17 and A19 as its rel-alarms.

2. n 6= 0 is repositioned at entry(n32) with D27 and D29 as its rel-alarms.

3. j ≥ 0 && j ≤ 4 is repositioned at exit(n34) with A37 as its rel-alarm.

4. j ≥ −1 && j ≤ 3 is repositioned at exit(n34) with A39 as its rel-alarm.

Note that, in each of the cases (1) and (2) above, the repositioned location is different from
the locations of hoisted conditions from which the repositioned avcond is computed. However,
in each of the cases (3) and (4) above, the repositioned location is same as the location of hoisted
condition from which the repositioned avcond is computed.

3.5.4.2 Step 2 (Simplification of the Repositioned Conditions)

Next every program point is processed to simplify the conditions repositioned at that point. The
simplification is performed on conjunction of the conditions that are repositioned at the same
point and involve checking values of the same expression. The traceability links for a condition
resulting after the simplification are obtained by merging traceability links of the conditions that
got simplified. For example, after this simplification step, the two conditions j ≥ 0 && j ≤
4 and j ≥ −1 && j ≤ 3 repositioned at exit(n34) (Section 3.5.4.1) result in the simplified
repositioned condition j ≥ 0 && j ≤ 3 at the same program point, with its traceability links
to both A37 and A39. In Algorithm 1, we assume that the function simplifyConds(C) accepts
repositioned conditions C to be simplified and returns the conditions after their simplification.
Moreover, we assume that it accordingly updates traceability links of the conditions.

3.5.4.3 Step 3 (Clustering of the Repositioned Conditions)

The repositioning resulting after the previous simplification step may have some redundancy,
because some of the repositioned conditions can be follower alarms in the presence of the other
repositioned conditions. As an example, consider the code in Figure 3.8a that has three AIOB
alarms reported at lines 7, 9, and 14. Following we describe the repositioned conditions obtained
after applying Step 2. The intermediate repositioning of these alarms results in hoisting condition
0 ≤ i ≤ 4 at entry(n6), and exit(n12), i.e., the intermediate repositioning contains two hoisted
conditions at entry(n6), and exit(n12). The repositioned conditions resulting after the improve-
ment of the intermediate repositioning (i.e., Step 1) are at entry(n6), exit(n12), and entry(n18).
These three repositioned conditions are shown as assertions at lines 5, 13, and 17, respectively.
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1 void f1(){
2 int i = lib1(), a[5];
3
4 if(...){
5 //assert(0 ≤ i ≤ 4); HA5

6 if(...)
7 a[i]=0; A7

8 else
9 a[i]=1; A9

10 if(...) return;
11 }else{
12 i = lib2();
13 //assert(0 ≤ i ≤ 4); HA13

14 a[i] = 0; A14
15 if(...) return;
16 }
17 //assert(0 ≤ i ≤ 4); // Follower
18 i = 0;
19 }

(a) Applying grouping

1 void f2(){
2 int a[5], tmp = 1, i = 0, j;
3
4 if (...){
5 if (...){
6 i = lib1();
7 } else {
8 i = lib2();
9 }

10
11
12 } else {
13 tmp = lib3();
14 }
15 j = 0;
16
17 a[i] = 0; A17
18 }

(b) Applying fallback

Figure 3.8: Examples to illustrate postprocessing of the repositioned conditions.

The condition 0 ≤ i ≤ 4 is repositioned at entry(n18) (line 17) because the same condition is
avcond at the exit of the program, with 0 ≤ i ≤ 4 as its repositioning condition and entry(n18)
as its repositioning location. The repositioning of the condition at entry(n18) denotes sinking of
the two hoisted conditions (present in the intermediate repositioning) to the entry of n18. The
traceability links of this repositioned condition are to all the three original alarms.

Applying the simplification step (Step 2) to the three repositioned conditions does not reduce
their number. Therefore, repositioning of the original three alarms (shown at lines 7, 9, and 14)
does not reduce the number of alarms.

Observe that the condition repositioned at entry(n18) (line 17) is redundant in presence of the
two other repositioned conditions: the other two repositioned conditions act as dominant alarms
for this condition. To improve the repositioning by eliminating such redundancy, (1) we postpro-
cess the repositioned conditions by applying the clustering techniques [124, 150, 223], and (2)
discard the repositioned conditions that are identified as followers. Applying this postprocessing
step to the three repositioned conditions discards the redundant repositioned condition (line 17),
and reduces the number of alarms by one. The final two repositioned conditions reported to the
user are denoted using circles.

When a repositioned condition is discarded on finding it as a follower, its traceability links
are transferred to its corresponding dominant repositioned conditions. In Algorithm 1, we as-
sume that the function discardFollowers(RS) performs clustering of given set of alarms RS , and
returns only the dominant alarms. Moreover, we assume that the function accordingly transfers
traceability links of the follower alarms to their respective dominant alarms.

3.5.4.4 Step 4 (Postprocessing for Fallback)

In certain cases, the repositioning obtained after Step 3 may increase the number of alarms. This
occurs due to (1) the two repositioning goals impacting each other (as illustrated below in certain
scenarios), or (2) transitive computation of the antconds and avconds.
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Algorithm 2 Algorithm for Repositioning Fallback Approach
Input: Set of original alarms Φ, set of repositioned alarms R
Output: Set of repositioned alarms Rf after fallback

procedure PERFORMFALLBACK(R, Φ)
origAlarms← Φ;
Rf ← R;
while origAlarms 6= ∅ do

φ′ ← CHOOSE(Φ);
Φ← Φ \ {φ′};
workingSet← {φ′};
origAlarmsSet← ∅;
reposAlarmsSet← ∅;
visitedOrigAlarms← ∅;
while workingSet 6= ∅ do

φ← CHOOSE(workingSet);
workingSet← workingSet \ {φ};
origAlarmsSet← origAlarmsSet ∪ {φ};
visitedOrigAlarms← visitedOrigAlarms ∪ {φ};
for each r ∈ GETRELREPOSALARMS(φ) do

reposAlarmsSet← reposAlarmsSet ∪ {r};
for each φ′ ∈ GETRELORIGALARMS(r) do

if φ′ 6∈ visitedOrigAlarms then
workingSet← workingSet ∪ {φ′};

end if
end for

end for
end while

if |reposAlarmsSet| > |origAlarmsSet| then
Rf ← (Rf \ reposAlarmsSet) ∪ origAlarmsSet;

end if
origAlarms← origAlarms \ origAlarmsSet;

end while
return Rf ; /* Set of final repositioned alarms */

end procedure

Consider the code example in Figure 3.8b. This example is crafted to illustrate impact of the
two repositioning goals on each other. The example has one alarm A17. For this example, during
the intermediate repositioning, the alarm’s condition, i ≥ 0 && i ≤ 4, gets hoisted at exit(n6)
and exit(n8). However, the condition hoisted at entry(n13) gets discarded via Equation 3.11: the
condition always holds at entry(n13) because value of i is 0 at line 13 due to the assignment at line
2. During an avconds analysis, due to this discarding the condition is not avcond at entry(n13),
and hence at entry(n15). Thus, repositioning of A17 results in two conditions repositioned at
exit(n6) and exit(n8) (the repositioned conditions are not shown in Figure 3.8b). That is, for this
example, the repositioning increases the number of alarms, from one to two.
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We discard redundant conditions during the intermediate repositioning to report the alarms
closer to their cause points. However, for this example, the discarding results in creating more
repositioned alarms than the original alarms. In the absence of this discarding, the condition gets
repositioned only at entry(n15), without increasing the number of alarms. This indicates the two
repositioning goals impact each other, i.e., reporting alarms closer to their causes might increase
the number of alarms.

Hence, we postprocess the repositioned conditions resulting after Step 3. In this postpro-
cessing step, we identify situations in which the number of alarms increases, and revert the re-
positioning in these situations, i.e., we report original alarms instead of the repositioned ones. We
call this approach fallback. Algorithm 2 presents the fallback approach, where it, for simplicity,
assumes the following two functions.

• getRelOrigAlarms(r) returns set of rel-alarms associated with a given repositioned alarm
condition r.

• getRelReposAlarms(φ) returns set of repositioned alarms for which φ is one of their rel-
alarms.

As shown by our experimental evaluation, discussed in the next section, fallback is rarely
required6.

3.5.4.5 Final Repositioning Example:

Applying Algorithm 1 to the alarms in Figure 3.1 results in the following final repositioning.
For this example, the postprocessing steps 3 and 4 do not change (improve) the repositioning
obtained after Step 2.

1. i ≥ 0 && i ≤ 4 is repositioned at entry(n11) with its traceability links to A17 and A19,
where the repositioning is identified by Equation 3.28 when applied to the exit(n11).

2. n 6= 0 is repositioned at entry(n32) with its traceability links to D27 and D29, where the
repositioning is identified when entry(End) is processed as the special case.

3. j ≥ 0 && j ≤ 3 is repositioned at exit(n34) with its traceability links to A37 and A39.

3.5.4.6 Properties of Repositioning Algorithm 1

In this section we prove properties of Algorithm 1.

Theorem 3.5.1. Given a set of alarms Φ, the repositioning of Φ resulting from Algorithm 1 is
safe.

Proof. Recall that repositioning of a set of original alarms S is safe if the following holds: each
of the resulting repositioned alarms is a false positive if and only if its corresponding original
alarms in S are false positives (Definition 3.3.3). Let ΦR be a set of alarms resulting after
repositioning of Φ by Algorithm 1. Proving repositioning of Φ obtained through Algorithm 1 is
safe requires the following two cases to be proved.

1. For every original alarm φp ∈ Φ detecting an error at p, there exists an alarm φ′q ∈ ΦR

denoting an error at q and detecting the same error at p, and vice versa.
6In fact, there existed only 20 instances that required fallback during repositioning of 33,162 alarms in our experi-

mentation.
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2. When every original alarm φp ∈ Φ is false, all alarms in ΦR are also false, and vice versa.

In the repositioning resulting due to Algorithm 1, the following holds true.

(A) Corresponding to every alarm φp ∈ Φ, there exists a repositioned alarm φ′q ∈ ΦR along
every path on which p appears either before or after p (Section 3.5.4.1), except the paths
along which φp is always safe (due to discarding of redundant hoisting). Furthermore,
cond(φ′q) along each path is directly or transitively derived from cond(φp).

(B) Corresponding to every repositioned alarm φ′q ∈ ΦR, there exists an original φp alarm
along every path on which q appears, and cond(φ′) is directly or transitively derived from
cond(φ). This follows from the fact that the repositioning location of an avcond is created
either (i) from a location of hoisted condition in intermediate repositioning or (ii) during a
meet operation (Equation 3.25). In the first case (i), the location of each hoisted condition
in intermediate repositioning is such that there exists a related original alarm on every path
passing through the location, because the hoisted conditions are computed based on ant-
conds. In the second case (ii), when a meet operation is performed, the new repositioning
location of an avcond is updated to the the meet point when the avcond has two different
repositioning locations. Therefore, for the conditions repositioned at the meet point, there
exists a related original alarm along every path that passes through the meet point.

Proving case 1 (Detection of an error):
Due to (A), ∀φp ∈ Φ : (!cond(φp))⇒ ∃ φ′ ∈ ΦR, (!cond(φ′)).
Due to (B), ∀φ′ ∈ ΦR : (!cond(φ′))⇒ ∃ φ ∈ Φ, (!cond(φ)).

Proving case 2 (Alarms are false positives):
Due to (A), ∀ φp ∈ Φ, (cond(φp))⇒ ∀ φ′ ∈ ΦR, (cond(φ′)).
Due to (B), ∀ φ′ ∈ ΦR, (cond(φ′))⇒ ∀ φ ∈ Φ, (cond(φ)).

Theorem 3.5.2. For any given set of alarms, Algorithm 1 always terminates.

Proof. The termination of Algorithm 1 is proved by proving termination of each of the steps in
the algorithm.
Step 1: This step computes final repositioning locations using the results of antconds analysis
(Section 3.4.1), rel-alarms analysis (Section 3.5.2), and avconds analysis (Section 3.5.3). As the
lattices of antconds and rel-alarms analyses have finite descending chains (Section 3.4.1.2), and
the data flow equations in Figures 3.2, and 3.4 are monotonic (Section 3.4.1.3), both the analyses
terminate [100, 163]. As discussed in Section 3.5.3.2, avconds analysis always terminates. Since
this step processes every program point corresponding to a node in finite set of nodesN , this step
always terminates.
Step 2: This step terminates because it iterates over all the program points to simplify conjunction
of the repositioned conditions.
Step 3: In this step, state-of-the-art clustering techniques [71, 124, 150, 223] are applied to
postprocess the repositioned conditions and these techniques are always terminating.
Step 4: Algorithm 2 presents identification of the situations where repositioning increases the
alarms count and reverting repositioning in those situations. It is described in detail in Section
3.5.4.4. The repositioned and original alarms processed by Algorithm 2 to perform fallback are
finite. In each iteration of the outer loop, at least one original alarm is processed and removed
from the set origAlarms. When all the original alarms in the set are processed (and removed
from the set), Algorithm 2 terminates. Therefore, this step (Step 4) of Algorithm 1 also termin-
ates.
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Theorem 3.5.3. For any given set of alarms, Algorithm 1 never increases the number of alarms
after repositioning.

Proof. In Step 4 (Section 3.5.4.4), Algorithm 2 identifies situations for repositioning fallback:
instances where the number of repositioned alarms is higher than the number of their corres-
ponding original alarms (rel-alarms) and reporting the original alarms instead of the repositioned
ones. In the other situations, the number of repositioned alarms is equal to or lesser than the
number of their corresponding original alarms. Thus, Algorithm 1 never increases the number of
alarms after repositioning.

Theorem 3.5.4. For a given set of dominant alarms Φ, Algorithm 1 performs sinking of an alarm
φ ∈ Φ only if there is an impending reduction in number of overall alarms.

Proof. The sinking of alarms occurs during avconds analysis when two or more same alarm
conditions but from different alarms meet for the first time. This sinking is denoted by Equation
3.25, where the two alarms are merged together to depict a single alarm. Such merging (sinking)
of alarms contribute to reducing overall alarms count. For a single alarm, such sinking is not
performed. Although such merging can result in repositioning conditions that are redundant
(Section 3.5.4.3). However, such redundant alarms resulting due to sinking are discarded via
the postprocessing Step 3. Thus, Algorithm 1 performs sinking of an alarm only if there is an
impending reduction in number of overall alarms.

3.6 Empirical Evaluation
In this section, we evaluate the alarms repositioning technique (Algorithm 1) that we presented to
reduce the number of alarms. We evaluate the technique using alarms generated by a commercial
static analysis tool on real-world applications. In the evaluation, we measure the reduction in
alarms that we obtain using the technique.

3.6.1 Experimental Setup
3.6.1.1 Implementation

We implemented alarms repositioning on top of analysis framework of our commercial static
analysis tool, TCS ECA [197]. The analysis framework supports analysis of C programs, and al-
lows to implement data flow analyses using function summaries. We implemented antconds ana-
lysis (Section 3.4.1), rel-alarms analysis (Section 3.5.2), and avconds analysis (Section 3.5.3), to
compute the conditions transitively. In each of these analyses, we computed the conditions inter-
procedurally, by solving the data flow analyses in bottom-up order only. In the antconds analysis,
for every function we propagated the conditions anticipable at its entry to its caller, only if that
function is called from a single place. In the avconds analysis, all the conditions available at the
exit of each function are propagated to all the caller(s) of that function irrespective of the call
invocations of the function. This implementation may result in repositioning an original alarm
at multiple locations, and for such cases we resort to the fallback approach. We implemented
computation of weakest precondition (resp. strongest postcondition) required in antconds (resp.
avconds) analysis only for the assignment nodes of simple types, e.g., x = y; x = y ± c; and
x = c ± y; where c is a constant. This limited implementation does not impact correctness of
the repositioning technique, however due to this limitation the technique can fail to group alarms
which could be grouped otherwise.
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Table 3.1: Experimental results showing reduction in number of alarms due to their repositioning.
The columns #Input, #Output, and %Reduction respectively present the number of alarms before
and after repositioning, and the percentage of alarms reduced. The column RCs presents the
number of repositioned conditions identified as followers (Section 3.5.4.3), while the column
FBs presents the number of instances where fallback gets applied (Section 3.5.4.4). The other
columns (Interprocedural and Reasons for Stopping Repos.) are described in Section 3.6.3.
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acpid-1.0.8 1.7 5 4 20.00 0 0 4.5 2.6 57.0 0 0 1 2 1
spell-1.0 2.0 17 17 0.00 0 0 15.2 4.7 30.9 0 0 3 9 5
barcode-0.98 4.9 580 540 6.90 0 0 54.2 12.4 23.0 0 0 2 363 175
antiword-0.37 27.1 748 689 7.89 6 0 941.7 116.1 12.3 1 35 93 454 142
sudo-1.8.6 32.1 2548 2407 5.53 28 0 2618.9 451.5 17.2 30 54 303 971 1133
uucp-1.07 73.7 263 244 7.22 4 0 455.3 42.2 9.3 0 0 17 134 93
ffmpeg-0.4.8 83.7 18523 17557 5.22 169 12 2059.2 535.4 26.0 85 610 1252 10263 6042
sphinxbase-0.3 121.9 908 887 2.31 24 0 162.0 48.1 29.7 5 41 39 662 186
archimedes-0.7.0 0.8 2251 2146 4.66 6 0 27.4 8.6 31.5 1 15 5 1078 1063
polymorph-0.4.0 1.3 10 8 20.00 0 0 5.3 2.1 39.5 0 0 1 6 1
nlkain-1.3 2.5 89 88 1.12 0 0 5.0 1.9 37.2 0 0 0 59 29
stripcc-0.2.0 2.5 88 77 12.50 8 0 17.5 2.8 16.1 0 0 2 49 26
ncompress-4.2.4 3.8 64 58 9.38 0 0 5.9 3.4 57.2 0 0 1 33 24
barcode-0.96 4.2 440 408 7.27 0 0 39.3 11.3 28.7 0 0 2 285 121
combine-0.3.3 10.0 454 407 10.35 9 0 46.7 12.5 26.8 0 2 9 295 103
gnuchess-5.05 10.6 1600 1503 6.06 40 0 86.4 19.9 23.0 10 38 90 782 631
industryApp 1 3.4 326 266 18.40 0 0 20.9 8.8 42.0 0 20 7 148 111
industryApp 2 18.0 163 162 0.61 1 0 44.4 11.4 25.8 0 5 14 112 36
industryApp 3 18.1 1111 1007 9.36 1 0 72.6 21.8 30.0 0 31 16 800 191
industryApp 4 30.9 2974 2541 14.56 1 11 1253.5 76.4 6.1 44 592 167 1675 699
Total 33162 31016 6.47 297 23 7935.9 1393.9 17.6 176 1443 2024 18180 10812

3.6.1.2 Selection of Applications and Alarms

For evaluation purpose, we selected 20 applications (Table 3.1): 16 open source and four industry
applications. All these applications were analyzed using TCS ECA on a machine with i7 2.5GHz
processor and 16GB RAM. The open source applications are selected from the benchmarks used
for evaluating the clustering techniques [124, 223]: the first eight applications are from the study
performed by Zhang et al. [223] and the next eight are from the study performed by Lee et al.
[124]. The remaining benchmarks from these studies either were not available or could not be
compiled or analyzed using TCS ECA. The industry applications selected are embedded systems
from the automotive domain. All the applications selected are coded in C.

We selected alarms corresponding to four commonly checked verification properties: di-
vision by zero (DZ), array index out of bounds (AIOB), integer overflow underflow (OFUF),
and uninitialized variables (UIV). The alarms selected were postprocessed using state-of-the-art
alarms clustering techniques [124, 150, 223], and we considered only the dominant alarms as
input to the repositioning. We performed clustering of alarms before their repositioning, be-
cause as indicated in Sections 3.1 and 3.2; we aim at overcoming the limitations of grouping
techniques. Due to possible side effects caused by function calls, alarms having function calls
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Table 3.2: Reduction in alarms error category-wise.

#Input #Output %Reduction
AIOB 3464 3221 7.02

DZ 985 975 1.02
OFUF 24843 23564 5.15
UIV 3914 3607 7.84

in their alarm conditions are excluded from grouping [150]. Thus, we also have excluded them
from repositioning.

3.6.2 Evaluation Results
Table 3.1 presents the number of alarms before and after repositioning, and the percentage of
alarms reduced: columns #Input, #Output, and %Reduction respectively. The percentage of re-
duced alarms ranges between 0 and 20%, with median reduction of 7.25% and average reduction
of 6.47%. The average reduction on open source applications is 5.41% as compared to 13.07% on
the industry applications. We performed a study to understand the reasons for higher reduction
on the industry applications. However, results of the study were inconclusive.

Table 3.1 also details the improvements resulting from the postprocessing of repositioned
conditions (steps 3 and 4 in Section 3.5.4). Column RCs of Table 3.1 presents the number of
repositioned conditions identified as followers, i.e., redundant conditions, by the clustering tech-
nique in Step 3 (Section 3.5.4.3). It indicates that around 1% of the repositioned conditions
computed by Step 2 are identified as redundant by Step 3. Column FBs presents the number of
instances, 23, where fallback got applied (Section 3.5.4.4). This indicates that the fallback gets
rarely applied in practice. Our manual analysis of these instances showed that (a) three instances
were due to the kind of inter-procedural implementation we had for avconds/antconds computa-
tion; (b) 18 instances were because of the two repositioning goals impacting each other; and (c)
the other 2 cases were due to computing the conditions transitively.

To compute performance overhead incurred by the repositioning, we compared the time for
repositioning (column Repositioning) to the time for (1) analyzing the code for the categories
selected and (2) clustering the TCS ECA-generated alarms (column Orig. analysis). On average,
the repositioning added performance overhead of 17.6% while it reduced the alarms count by
6.47%.

To investigate which verification properties are benefited the most through repositioning, we
performed evaluation by repositioning alarms in each category separately. The evaluation results
in Table 3.2 shows that reduction percentages for AIOB, OFUF, and UIV are comparable and
are lowest for DZ. Our analysis of the results for DZ showed that the division operations mostly
appear in only one branch of an if condition. In such cases, repositioning is unable to merge such
alarms.

3.6.3 Discussion and Future Work
The reduction in alarms due to repositioning, 7.25%, is on top of the alarms reduction obtained
through the clustering techniques. Thus, the reduction indicates failure of the clustering tech-
niques to merge those alarms. Recall that the repositioning technique also uses alarms clustering
to identify and discard redundant repositioned conditions (Section 3.5.4.3). Thus, clustering and
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repositioning techniques help each other when used to reduce the number of alarms. Further-
more, we observe that, if implication is handled during the computation of antconds and avconds
(Equations 3.6 and 3.22), the presented repositioning subsumes clustering of alarms, and there-
fore clustering of original alarms can be skipped when their repositioning is performed.

We believe that inter-procedural hoisting of alarms can provide more benefits in manual in-
spection of alarms. The expected gain is due to eliminating code traversals from the functions of
their original reporting to the functions having repositioned alarms. From the evaluation, we also
see that while merging alarms originally reported in different functions is not frequent (column
Mergings), repositioning alarms across the function boundaries is quite common (column Re-
pos.).

The repositioning of alarms mainly comprises upward repositioning (hoisting), whereas the
forward repositioning (sinking) is performed only when hoisting does not help to reduce their
number. Our attempt to understand the reasons for stopping the backward repositioning showed
the following.

1. For around 6% of the repositioned alarms, the backward repositioning stopped at the entry
of a function as the function was called from more than one place (column Func entry);

2. For around 59% of the repositioned alarms, the backward repositioning stopped due to
branching nodes: the repositioned alarm appears only in one branch of the if statement
(column Branches);

3. For the other repositioned alarms (35%), the backward repositioning stopped due to defin-
itions of a variable appearing in the alarm conditions (column Defs).

Majority of the upward repositioning of alarms is stopped in Case 2. We stop the upward
repositioning of an alarm in this case, i.e., when the alarm appears in only one branch of an if
statement, because the if statement can prevent the alarm from being an error. If the reposi-
tioning is continued beyond the if statement due to which the alarm is false positive, we cannot
guarantee that the required repositioning constraint is met (whenever the repositioned alarm is
false positive, its corresponding original alarms are also false positives, and vice versa). Repos-
itioning an alarm further upward, i.e., beyond if statements that do not prevent it from being an
error, can allow to merge it with another and reduce their number. To this end, in the next chapter
(Chapter 4), we design a strategy to identify if statements that are non-impacting to the alarms,
and therefore should not stop the repositioning process.

3.7 Related Work
As there exist six categories of approaches for alarms postprocessing, and multiple techniques
in each category, we limit the comparisons of our technique to the approaches/techniques that
are closely related. As discussed in Section 3.2, clustering of alarms based on similarity/correla-
tions is the most closely related approach to repositioning. State-of-the-art clustering techniques
[124, 150, 223] have helped to reduce the number of alarms significantly (34 to 60%). However,
they fail to group alarms in certain cases (discussed in Section 3.2) and also report the alarms
away from their causes. As discussed in Section 3.2, our approach to reposition alarms is mo-
tivated by the work by Gerhke et al. [71]. Their work aims to overcome limitations of alarms
clustering techniques by repositioning alarms. The technique they use to reposition and group
similar alarms sometimes ends up creating more alarms than the alarms input for repositioning.
Moreover, the technique does not perform sinking of alarms, and does not maintain traceability
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link(s) between a repositioned alarm and its corresponding original alarm(s). In the absence of
these links, reviewer needs to perform additional code traversals but in forward direction to locate
the original alarms corresponding to a repositioned alarm, when (1) the repositioned alarm de-
notes an error, and (2) a correction is needed at its corresponding original alarm program point(s).
Our technique has been designed to overcome these limitations.

Cousot et al. [39] have proposed usage of necessary preconditions which are hoisted to the
method entry, corresponding to the inevitable checks within a method. The conditions hoisting is
used in the context of providing the preconditions required by the Design by Contract [145]. On
similar lines, Das et al. [48] have proposed angelic verification technique for verification of open
programs. This technique is intended to prune the alarms generated during verification of open
programs with an unconstrained environment. The alarms repositioning technique is applicable
to programs with both constrained and unconstrained environments.

Muske and Khedker [154] have proposed cause points analysis to handle alarms effectively
during the manual inspections. In their approach, instead of alarms, ranked causes to the alarms
are reported and user inputs are sought in several iterations to resolve the alarms. This approach
does not reduce the number of alarms without user intervention.

We observe that alarms repositioning can be applied in conjunction with other alarms post-
processing techniques to complement each other, and also, we believe that the combinations
will provide more benefits as compared to the benefits obtained by applying them individually.
Benefits of such combinations should be subject of further studies.

3.8 Conclusion
In this chapter, we have proposed a novel alarms postprocessing technique intended mainly to
reduce the number of alarms. We obtain a reduction by overcoming the limitation of the existing
alarms clustering techniques (addressed by RQ 2) that fail to group similar alarms, e.g., when
similar alarms appear in different branches of an if statement. The failure occurs because they
report alarms at the program points where alarms are generated. The novelty of our repositioning
approach consists in reporting those alarms at some other locations, which subsequently allows
to reduce the number of alarms appearing in those limitation cases. Therefore we find that,

Repositioning alarms to other locations than their original locations helps to overcome
the limitation of state-of-the-art clustering techniques.

We have evaluated the technique using 33,162 alarms generated by our commercial static
analysis tool, TCS ECA, on 20 open source and industry applications. The evaluation results
indicate that,

Repositioning of alarms helps to reduce the number of alarms up to 20%, with median
reduction of 7.25%.

In addition to the primary goal of reducing the number of alarms, the repositioning technique
can be used to report alarms as close as possible to their cause points. Such reporting helps to
reduce backward code traversals performed during the manual alarms analysis. We believe that
the repositioning technique, being orthogonal to many of the existing approaches to postprocess
alarms, can be applied in conjunction with those approaches.
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Prior techniques [71, 124, 150, 223], which group similar alarms, have measured their ef-
fectiveness by measuring reduction in the number of alarms. Therefore, on similar lines, we
measured effectiveness of the proposed repositioning technique by measuring reduction in the
number of alarms. Evaluating its effectiveness in terms of actual benefit—reduction in manual
inspection effort—due to reducing the number of alarms and backward code traversals is a part
of future work. Such evaluations require performing a controlled study by involving multiple
participants who are (experienced) users of static analysis tools: identifying such participants
and involving them in a controlled study is difficult and costly.

In our evaluation we observed that, in majority of the cases, the hoisting repositioning of
alarms is stopped due to the conservative assumption made about controlling conditions of the
alarms when the alarms appear in only one branch of the if statements. Therefore, we aim to
overcome this limitation. To this end, in the next chapter (Chapter 4), we design a strategy to
identify controlling conditions of alarms, that do not impact the alarms. Considering the effect
of those non-impacting controlling conditions can help to further reduce the number of alarms.



Chapter 4

NCD-based Repositioning of Alarms

Static analysis tools help to detect programming errors but generate a large number of alarms. In
Chapter 3 we have proposed a technique to reduce the number of alarms by repositioning them.
The repositioning technique replaces a group of similar alarms by a single repositioned alarm,
e.g., when they belong to different branches of a conditional statement. However, as observed in
Section 3.6.3 the technique fails to merge similar alarms mainly when the immediately enclosing
conditional statements of the alarms are different and not nested. This limitation is due to our
conservative assumption that a conditional statement of an alarm may prevent the alarm from
being an error. Our pilot study on 16 open source applications indicates that, as a result of this
failure, 38% of the alarms obtained after repositioning are similar but not grouped together.

To address the limitation above, we introduce the notion of non-impacting control depend-
encies (NCDs). An NCD of an alarm is a transitive control dependency of the alarm’s program
point, that does not affect whether the alarm is an error. We approximate the computation of
NCDs based on alarms that are similar, and then reposition these similar alarms by considering
the effect of their NCDs. We call this variant of repositioning NCD-based repositioning. Com-
pared to the original repositioning technique, NCD-based repositioning allows to merge more
similar alarms together and represent them by a small number of representative repositioned
alarms. Thus, it can be expected to further reduce the number of alarms.

To measure the reduction obtained, we evaluated NCD-based repositioning using 105,546
alarms generated on the 20 applications previously used during evaluation of the original re-
positioning technique (Section 3.6.1.2), and 12 additional industry applications. The evaluation
results indicate that, compared to the original repositioning technique, NCD-based repositioning
reduces the number of alarms respectively by up to 23.57%, 29.77%, and 36.09%. The median
reductions respectively are 9.02%, 17.18%, and 28.61%.
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4.1 Introduction
In this section, we describe the limitation of alarms repositioning technique (Section 3.6.3), that
we address in this chapter and present overview of our solution. We begin by providing brief
background to the alarms clustering and repositioning techniques.

4.1.1 Background
Static analysis tools help to automatically detect common programming errors like division by
zero and array index out of bounds [12, 14, 21, 206] as well as to certify absence of such errors
in safety-critical systems [24, 52, 112]. However, these tools report a large number of alarms
that are warning messages notifying the tool-user about potential errors [54, 92, 139, 181, 186].
Partitioning alarms into true errors and false alarms (false positives) requires manual inspection
[54, 120, 182]. The large number of false alarms generated and effort required to analyze them
manually have been identified as primary reasons for underuse of static analysis tools in practice
[20, 37, 92, 120].

Clustering of alarms, one of the six categories of approaches that we identify in the literature
study (Chapter 2), is commonly used to reduce the number of alarms. State-of-the-art cluster-
ing techniques [71, 123, 150, 223] group similar alarms together such that (1) there are a few
dominant and many dominated alarms; and (2) when the dominant alarms of a cluster are false
positives, all the alarms in the cluster are also false positives. The techniques count only the
dominant alarms as the alarms obtained after clustering.

The clustering techniques [71, 123, 150, 223] fail to group similar alarms which could be
grouped together. To overcome the limitation of the techniques, we proposed repositioning of
alarms (Chapter 3). Our technique repositions a group of similar alarms to a program point where
they can be safely replaced by a single newly created representative alarm (called repositioned
alarm). The alarms repositioning is safe and performed only if the following repositioning cri-
terion is met—a repositioned alarm is a false positive if and only if its corresponding original
alarms are all false positives. Thus, repositioned alarms act as dominant alarms for the ori-
ginal similar alarms that are replaced by them. Henceforth in this chapter, we call the technique
proposed in Chapter 3 original repositioning technique (ORT).

4.1.2 The Problem
In our evaluation of ORT (Section 3.6.3), we observed that the technique fails to reposition and
merge similar alarms when their immediately enclosing conditional statements are (1) differ-
ent, and (2) non nested (i.e., immediately enclosing conditional statement of one alarm is not
a conditional statement of another alarm’s immediately enclosing conditional statement). As
a consequence, in this case, the technique does not reduce the number of similar alarms. We
call these cases repositioning limitation scenarios. We illustrate this limitation using the alarms
(rectangles) shown in Figure 4.1. The code is excerpted from archimedes-0.7.0. The two code
examples shown in Figures 4.1a and 4.1b are independent of each other. Analyzing the code in
Figure 4.1a (resp. Figure 4.1b) using any static analysis tool generates two (resp. four) alarms
corresponding to array index out of bounds (resp. division by zero). Grouping these alarms using
the clustering techniques does not reduce their number.
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1void HoleHMEPBCs(void){
2 int h2d[309];
3
4 ...
5 fscanf(fp,"%d",&ny);
6
7 //assert(0 ≤ ny ≤ 304); R7
8
9 if(EDGE[2][i][0] == 0){

10 h2d[ny + 4] = ...; A10

11 }
12
13 if(EDGE[2][i][0] == 1
14 || EDGE[2][i][0] == 2){
15 h2d[ny + 4] = ...; A15

16 }
17
18}

(a) readinputfile.h

31 void Read_Input_File(void){
32 ...
33 fscanf(fp,"%d %d", &nx, &ny);
34 fscanf(fp,"%s", pos);
35
36 //assert(nx! = 0); R36

37 if(strcmp(pos,"DOWN") == 0)
38 delt = LX / nx; D38

39
40 //assert(ny! = 0); R40

41 if(strcmp(pos,"RIGHT") == 0)
42 delt = LY / ny; D42

43
44 if(strcmp(pos,"UP") == 0)
45 delt = LX / nx; D45

46
47 if(strcmp(pos,"LEFT") == 0)
48 delt = LY / ny; D48

49 }

(b) Hole_bcs.h

Figure 4.1: Examples of alarms to illustrate their NCD-based repositioning.

Among the six alarms shown in Figure 4.1, there exist three groups of similar alarms: A10 and
A15, D38 and D45, and D42 and D48. ORT cannot determine whether the control dependencies1

(i.e. the enclosing conditional statements) of these alarms can prevent the alarms from being an
error. Thus, it conservatively assumes that the control dependencies of these alarms can prevent
the alarms from being an error, i.e., the dependencies can impact those alarms. For example,
the values read for nx at line 33 can be zero due to which two similar alarms D38 and D45 get
generated. However, ORT conservatively assumes that the control dependencies of these alarms
can prevent the zero value read for nx from reaching to lines 38 and 45. As a result of the
conservative assumption, the repositioning criterion cannot be guaranteed for repositioning of
these two similar alarms to any program point, e.g., to line 36. That is, the resulting repositioned
alarm can be an error while none of these two alarms is an error. Thus, the technique fails to
reposition and merge these two similar alarms together. Similarly, the technique also fails to
reposition the other two groups of similar alarms shown in Figure 4.1. As a result, the technique
does not reduce the number of alarms shown in Figure 4.1.

We find that the above assumption about the control dependencies of the alarms’ program
points limits the reduction achieved by ORT, because not every control dependency of an alarm’s
program point can prevent the alarm being an error. For example, the conditions corresponding to
the control dependencies of the alarms shown in Figure 4.1 are most likely to determine whether
the program points of those alarms are to be reached and not to prevent the alarms from being an
error (see Section 4.4.1).

Our pilot study using 64,779 alarms generated on 16 open source applications (Section 4.3)
indicates that 38% of the alarms reported after their repositioning are still similar and appear in

1A control dependency of a program point p is a conditional edge in the control flow graph [5], which decides
whether p is to be reached or not (see Section 4.2.1).
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the repositioning limitation scenarios. These results suggest the scope for improvement. To this
end, we ask the following research question.

RQ 3: How can we improve the reduction in the number of alarms obtained by reposi-
tioning them?

4.1.3 Overview of Our Solution
To overcome the problem above and further reduce the number of alarms, we introduce the no-
tion of non-impacting control dependencies (NCDs). An NCD of an alarm is a transitive control
dependency2 of the alarm’s program point, that does not affect whether the alarm is an error. As
we intend to reposition and merge more similar alarms together for reducing their number, we
restrict the scope of computation of NCDs to similar alarms only. Since determining whether
a control dependency is an NCD is undecidable (Section 4.4.2), we compute NCDs of sim-
ilar alarms approximately. The NCDs computed are subsequently used to reposition the similar
alarms. Therefore, this variant of repositioning, that we call NCD-based repositioning, allows
to reposition more similar alarms together and replace them by fewer repositioned (dominant)
alarms than ORT. For example, our approach to compute NCDs, identifies the control depend-
encies of the alarms shown in Figure 4.1 as NCDs. Repositioning each group of similar alarms
using the NCDs allows to replace the group by a newly created dominant alarm (shown using
circles). Thus, NCD-based repositioning reduces the number of alarms by three.

Although NCD-based repositioning is performed based on approximated NCDs, the reposi-
tioned alarms do not miss detection of an error uncovered by the original alarms. Thus, NCD-
based repositioning can be expected to further safely reduce the overall number of alarms.

To measure the reduction obtained, we evaluate NCD-based repositioning on total 105,546
alarms generated for the following kinds of applications: (i) 16 open source C applications pre-
viously used as benchmarks for evaluating ORT (Section 3.6.1.2); (ii) 4 industry C applications
that were previously used as benchmarks to evaluate ORT (Section 3.6.1.2), and 7 additional in-
dustry C applications; and (iii) 5 industry COBOL applications. The evaluation results indicate
that, compared to ORT, NCD-based repositioning reduces the number of alarms on these applic-
ations, respectively by up to 23.57%, 29.77%, and 36.09%. The median reductions are 9.02%,
17.18%, and 28.61%, respectively.

Following are the key contributions of our work presented in this chapter.

1. The notion of NCDs of alarms and computing them for similar alarms.

2. An NCD-based repositioning technique to reduce the number of alarms.

3. A large-scale empirical evaluation of the technique using 105,546 alarms on 16 open
source and 16 industry applications.

Chapter Outline Section 4.2 presents terms and notations that we use throughout this chapter
and later in Chapter 6. Section 4.3 describes the pilot study. Section 4.4 describes the notion of
NCDs and NCD-based repositioning. Section 4.5 presents a technique/algorithm to implement
NCD-based repositioning. Section 4.6 describes our empirical evaluation. Section 4.7 presents
related work, and Section 4.8 concludes.

2A conditional edge e is called a transitive control dependency of a point if the edge belongs to transitive closure of
control dependencies of that program point (see Section 4.2.1).
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1 void f1(int p, int q){
2 int t, arr[10], i;
3
4 i = readInt();
5
6 if(p == 1)
7 i = 0;
8
9 if(q == 100)

10 if(p == 1)
11 arr[i] = 0; A11

12 if(q == 5){
13 arr[i] = 1; A13

14 print(20 / i); D14

15 }
16
17 if(q == 5)
18 t = arr[i]; A18

19
20 q = lib();
21 if(q == 5)
22 t = 0;
23 }

Figure 4.2: Examples to illustrate ICDs and NCDs of alarms.

4.2 Terms and Notations
We use the same terms and notations described in Section 3.2.1 for control flow graph and pro-
gram points. Below we describe a few additional terms and notations that we use in this chapter
and Chapter 6. Examples of these terms and notations are provided by referring to Figure 4.2.

4.2.1 Data and Control Dependencies
Let dx : x = y be a definition of x at a program point dx. A definition dx : x = y of x is said
to be a reaching definition of x at a program point p if there exists a path from the program entry
to p such that the point dx is on this path and x is not redefined along the path between dx and p
[100, 163]. For example, i = readInt() (at line 4) and i = 0 (at line 7) are reaching definitions
of i at line11. A variable v at a program point p is said to be data dependent on a definition dv
of v, if dv is a reaching definition of v at p. Data dependencies of a variable v are the definitions
on which v is data dependent. For example, i = readInt() (at line 4) and i = 0 (at line 7) are
data dependencies of i at line11.

A node w is said to be control dependent on a conditional edge u → v if w post-dominates
v; and if w 6= u, w does not post-dominate u [44, 64]. For example, n7 is control dependent on
edge n6 → n7. Control dependencies of a node n or a program point entry(n) (or exit(n)) are
the conditional edges on which the node n is control dependent. For example, edge n6 → n7

is a control dependency of n7, entry(n7), and exit(n7). A conditional edge e is called transitive
control dependency of a point p if e belongs to the transitive closure of control dependencies of
p. We use e  p to denote that e is a transitive control dependency of a program point p. For
example, (n9 → n10) n11, and (n9 → n10) entry(n11), because it is a control dependency
of n10 which is source node of the control dependency of n11.

Definition 4.2.1 (Equivalent Conditions). We say that conditions of two conditional edges e1

and e2 are equivalent if cond(e1)⇔cond(e2). In the other case, we say that the conditions of the
two dependencies are non-equivalent. �

For example, (1) the conditions of n6 → n7 and n10 → n11 are equivalent, and (2) the
conditions of n12 → n13, n17 → n18, and n21 → n22 are also equivalent. Note that, as
conditions of conditional expressions are logical formulas without considering the context of the
program point where they are present, checking their equivalence is same as checking whether
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two logical formulas are equivalent. Therefore, in the second example, the conditions of n17 →
n18, and n21 → n22 are also equivalent even though the variable q can take different values at
their corresponding program points.

Definition 4.2.2 (Condition-wise Equivalent Conditional Edges). We call two conditional edges
n → n′ and m → m′ condition-wise equivalent only if (1) their conditions are equivalent; and
(2) every variable in their conditions has same data dependencies at exit(n) and exit(m). �

For example, in Figure 4.2, (1) n6 → n7 and n10 → n11 are condition-wise equivalent,
and (2) n12 → n13 and n17 → n18 are also condition-wise equivalent. Note that, although
n12 → n13 and n21 → n22 have equivalent conditions, they are not condition-wise equivalent:
the reaching definitions of the variable q in their conditions are different due to the assignment
to q at line 20.

4.2.2 Static Analysis Alarms
Recall that we use cond(φ) to denote the alarm condition of an alarm φ, i.e., the check performed
by the analysis tool for detecting an error (Section 3.2.2). The alarm condition holds iff the
corresponding alarm is a false positive. For an evaluation of an alarm condition cond(φ), let the
values of variables in the evaluation are denoted as a tuple. We use safe values (resp. unsafe
values) to refer to the set of all possible tuples of values of the variable(s) in cond(φ), where the
values in each tuple evaluates cond(φ) to true (resp. false).

We use φp to denote an alarm φ located at a program point p, and thus we say that the
transitive control dependencies of φp are same as the transitive control dependencies of p. We
write e  φ to indicate that e is a transitive control dependency of an alarm φ. We use tuple
〈c, p〉 to denote a newly created (repositioned) alarm at p with c as its alarm condition.

4.3 Pilot Study
Usefulness of the repositioning technique we will develop in this chapter is based on two as-
sumptions: (1) large number of alarms resulting from ORT are similar, and (2) large percentage
of these similar alarms appear in the limitation scenarios (Section 4.1). Indeed, if only few alarms
are similar, or if the similarity is not related to the limitation scenarios, impact of the technique to
be developed will be negligible. Hence, in this section we perform a preliminary study to meas-
ure (1) what percentage of alarms resulting after ORT are similar; and (2) what percentage of
these similar alarms appear in the repositioning limitation scenarios. The similar alarms appear-
ing in those limitation scenarios are candidates for reducing their number through NCD-based
repositioning.

We selected 16 open source C applications that were previously used for evaluating ORT
(Section 3.6.1.2). We analyzed these applications using our static analysis tool, TCS ECA [197],
for five verification properties: division by zero, array index out of bounds (AIOB), arithmetic
overflow and underflow, dereference of a null pointer, and uninitialized variables. As we aim
to measure percentage of similar alarms resulting after applying ORT, the tool-generated alarms
are postprocessed using the clustering techniques [124, 150] and then the resulting dominant
alarms are repositioned using ORT (Section 3.6.1.2). Note that this pilot study differs from the
evaluation of ORT (Section 3.6) in the number of verification properties and thus the number of
alarms considered: dereference of a null pointer was considered additionally. The inclusion of
alarms of this property was to eliminate any bias that can possibly get introduced to alarms of



4.3. Pilot Study 81

Table 4.1: Percentage of similar alarms among the alarms resulting after applying ORT.

Application Total Alarms
% Similar

Alarms

% Same
Data

Dependencies

% Different
Data

Dependencies

archimedes-0.7.0 2275 51.60 34.24 65.76
polymorph-0.4.0 25 28.00 100.00 0.00
acpid-1.0.8 25 44.00 45.45 54.55
spell-1.0 71 25.35 44.44 55.56
nlkain-1.3 319 53.92 36.63 63.37
stripcc-0.2.0 229 66.81 84.31 15.69
ncompress-4.2.4 92 51.09 53.19 46.81
barcode-0.96 1064 47.09 61.68 38.32
barcode-0.98 1310 46.64 60.72 39.28
combine-0.3.3 819 66.42 71.14 28.86
gnuchess-5.05 1783 51.65 55.27 44.73
antiword-0.37 613 32.79 60.70 39.30
sudo-1.8.6 7433 43.72 54.18 45.82
uucp-1.07 2068 51.50 70.23 29.77
ffmpeg-0.4.8 45137 51.99 82.33 17.67
sphinxbase-0.3 1516 54.68 49.70 50.30
Total 64779 50.89 74.55 25.45
The column % Same Data Dependencies (resp. % Different Data Dependen-

cies) presents percentage of the similar alarms having same (resp. different) data
dependencies.

particular patterns/types, because the other alarms were analyzed in our prior study to understand
reasons for stopping upward repositioning of alarms ((Section 3.6.3). Recall that the study of
alarms resulting after ORT (Section 3.6.3) aimed at understanding the reasons for stopping the
upward repositioning of alarms, whereas this pilot study is to understand the percentage of similar
alarms that are candidates for their merging through NCD-based repositioning.

We first identified groups of similar alarms from 64,779 alarms generated by the setup above.
Next we identified similar alarms in each group that have same data dependencies for their vari-
ables, and counted those alarms as the similar alarms appearing in the repositioning limitation
scenarios. Results of this study are shown in Table 4.1. The column Total Alarms shows the
number of total alarms generated by ORT for the selected five properties. The column % Sim-
ilar Alarms presents percentage of similar alarms in the total alarms. The column % Same Data
Dependencies (resp. % Different Data Dependencies) presents percentage of the similar alarms
that have same data dependencies (resp. different data dependencies).

The study indicates that, on average, 50.89% of the alarms resulting after ORT are similar,
and 74% of these similar alarms—38% of the total alarms—appear in the repositioning lim-
itation scenarios. Based on these results, we expect postprocessing alarms using NCD-based
repositioning can help to reduce their number.
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4.4 NCDs of Similar Alarms
In this section, first we describe the notion of non-impacting control dependencies (NCDs) of
alarms. Then, we discuss our approach to approximately compute NCDs of similar alarms.
Lastly, we describe performing NCD-based repositioning of similar alarms by taking into ac-
count the effect of NCDs computed for them.

4.4.1 The Notion of NCD of an Alarm
Definition 4.4.1 (NCD of an alarm). Let φ be an alarm reported in a program P , and (n→ n′) is
a transitive control dependency of φ. Let P ′ be obtained from P by replacing the condition of the
branching node n with a call to non-deterministic choice function3. We say that the dependency
n → n′ is an impacting control dependency (ICD) of φ only if φ is a false positive in P but
an error in P ′. Otherwise, we say that the dependency n → n′ is a non-impacting control
dependency (NCD) of φ. �

We illustrate the notion of NCD/ICD by classifying the effect of a control dependency e  
φp on φp, where e = n → n′. The classification is based on the values that can be assigned to
variables in cond(φp).

Class 1 The variables in cond(φp) are assigned with safe values by their data dependencies,
and thus φp is a false positive. In this case, e is an NCD of φp: replacing the condition of the
branching node n—the source node of e—by a call to non-deterministic choice function does
not cause φp to be an error.

Class 2 The variables in cond(φp) are assigned with unsafe values by their data dependencies,
and φp is an error if the unsafe values reach the alarm program point p. In this case, the effect of
e on φp is in one of the following two ways depending on whether the unsafe values reach φp.

Class 2.1: The condition cond(e) prevents the flow of the unsafe values from reaching φp and
thus φp is a false positive. In this case, if the condition of the source node n of e is replaced
by a call to non-deterministic choice function, the alarm is an error as those unsafe values
reach φp. That is, e affects whether φp is an error or a false positive. Thus, in this case, we
say that e is an ICD of φp, and cond(e) is a safety condition for φp because e prevents the
alarm from being an error. For example, in Figure 4.2, the control dependency n10 → n11

is an ICD of A11, because (i) A11 is a false positive as the control dependency prevents the
flow of unsafe values (i < 0 and i > 9) from flowing at the alarm’s program point; and (ii)
the same alarm is an error4 if the condition of the control dependency is replaced by a call
to non-deterministic choice function.

Class 2.2: The condition cond(e) does not prevent the flow of the unsafe values from reaching
φp and thus φp is an error. In this case, if the condition of the source node n of e is replaced
by a call to non-deterministic choice function, the alarm would still remain as an error.
That is, e does not affect whether φp is an error or a false positive. Thus, we say that e is
an NCD of φp. For example, in Figure 4.2, the control dependency n12 → n13 of D14 is
NCD.

3A function is called non-deterministic choice function if it non-deterministically returns a value in the range of its
return data type [34, 46, 153].

4In Figure 4.2, the call at line 4, readInt(), is assumed to return any of the possible values.
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4.4.2 Computation of NCDs of Similar Alarms
Computing whether a given dependency e of an alarm φ is an ICD or NCD includes determining
that φ is a false positive when the effect of e is captured and the same alarm is an error when
the effect of e is ignored. As determining whether φ is a false positive is undecidable in general
[54, 139], determining whether e is an ICD/NCD of φ is also undecidable. Thus, we compute
approximation of ICDs/NCDs. As we aim to reposition similar alarms together, we focus on
computing NCDs of those similar alarms only. For a given set of similar alarms ΦS and φ ∈ ΦS ,
the approximation of NCDs/ICDs of φ is described below.

Computation of ICDs For an alarm φ, we compute its transitive control dependency e  φ
as ICD, only if every path reaching each alarm φ′p ∈ ΦS has a dependency e′  φ′p on it such
that e and e′ are condition-wise equivalent. For example, the control dependencies of the similar
alarms A13 and A18 in Figure 4.2 are ICDs.

Computation of NCDs For an alarm φ, we compute its transitive control dependency e φ as
NCD, if there exists a path reaching at an alarm φ′p ∈ ΦS without having a dependency e′  φ′p
on it such that e and e′ are condition-wise equivalent. For example, in Figure 4.1, the control
dependencies of the similar alarms D38 and D45 are NCDs.

In other words, when φ ∈ ΦS , e φ, and a condition equivalent to cond(e) appears on every
path to each of the similar alarms ΦS , then we treat cond(e) as a potential safety condition for
each alarm in ΦS , and thus e as an ICD of φ. Otherwise, e is an NCD of φ.

Intuition Behind the Approximation NCDs of similar alarms computed above approximate
NCDs as defined in Definition 4.4.1. The idea of the approximation is based on the earlier
observation by Kumar et al. [116] that removing statements which merely control reachability
of an alarm’s program point rarely affects whether the alarm is false positive or not: removing
the non-value impacting control statements of the alarms changed only 2% of the false positive
alarms into errors. This suggests that for a given dependency e  φ, cond(e) is rarely a safety
condition for φ, i.e., e is rarely an ICD of φ. Thus, intuitively, the chance of there existing different
safety condition for each of the alarms in ΦS is even lower: if there exists a safety condition to
prevent an alarm from being an error, an equivalent condition also should exist for every other
similar alarm. For example, in Figure 4.1, if the condition strcmp(pos, “DOWN”) == 0 is a
safety condition for D38, the same condition should also have been present for its similar alarm
D45. Thus, we approximate the control dependencies of those two alarms to be NCDs. On
similar lines, the control dependencies of the other alarms in Figure 4.1 are NCDs.

In the next section we discuss that, although the above computation of NCDs is observation-
based and approximated, the NCDs computed can be safely used to reduce the number of alarms.

4.4.3 NCD-based Repositioning of Similar Alarms
To overcome the limitation of ORT, discussed in Section 4.1.2, we reposition a group of similar
alarms by considering the effect of their NCDs. We design NCD-based repositioning to sat-
isfy the following constraints C1, C2, and C3, where R is the set of alarms resulting from the
repositioning of a set of similar alarms ΦS .
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C1: The program points of the repositioned alarms R together dominate the program point
of every alarm φ ∈ ΦS , so that when the repositioned alarms R are false positives, the
original alarms ΦS are also false positives.

C2: For every repositioned alarm r ∈ R, there exists a path between r and φ ∈ ΦS such that
the path does not have an ICD of φ (that is, along a path between r and an alarm φ ∈ ΦS ,
all the control dependencies of φ are NCDs).

C3: The number of the repositioned alarms R is not greater than the number of original alarms
ΦS .

The constraint C1 ensures that when φ ∈ ΦS is an error, at least one of the repositioned
alarms R is also an error. Thus, the repositioning is safe, and the repositioned alarms R together
act as dominant alarms of the original alarms ΦS . However, as the repositioned alarms are
newly created, with C1 we cannot guarantee that when a repositioned alarm rp ∈ R is an error,
at least one of its corresponding original alarms Φ′ ⊆ ΦS is an error. That is, rp may detect
an error spuriously (i.e., rp is a spurious error). The spurious error detection occurs only when
every path between rp and each φ ∈ Φ′ has an ICD of φ. In alarms repositioning approach,
for a repositioned alarm, its corresponding alarms need to be manually inspected only when the
repositioned alarm is found to be an error (Section 3.2.5). Therefore, when a repositioned alarm
is a spurious error, the required inspection of its corresponding original alarms does not detect
an error. As a result, in such cases, the number of alarms inspected is greater than the number of
the original alarms.

To overcome the problem above—a repositioned alarm detecting a spurious error—we add
the second constraint C2. The constraint C2 ensures that when a repositioned alarm is an error,
at least one of its corresponding original alarms is also an error. The constraint C1 together
with C2 guarantees that when a repositioned alarm is an error, at least one of its corresponding
original alarms is also an error, and vice versa. In other words, when the repositioned alarms R
are false positives, the original alarms ΦS are also false positives, and vice versa. Thus, NCD-
based repositioning with these two constraints, C1 and C2, meets the repositioning criterion
(Section 4.1). As NCD-based repositioning creates new alarms, with the third constraint C3, we
ensure that the repositioning never results in more alarms than the input for repositioning. Thus,
NCD-based repositioning performed with constraints C1, C2, and C3 is safe, without spurious
error detection by the repositioned alarms, and without increasing the overall number of alarms.

For example, Figure 4.1 also shows NCD-based repositioning of the similar alarms, obtained
using the NCDs computed above (Section 4.4.2). The repositioned alarms are shown using
circles. The shown NCD-based repositioning satisfies the three repositioning constraints (C1,
C2, and C3).

During repositioning of a set of similar alarms, when a repositioned alarm can be created
at multiple locations satisfying the three repositioning constraints, we choose the location that
is closer to its corresponding original alarms. Note that, although NCD-based clustering is per-
formed using approximated NCDs, the repositioning obtained is still safe (Constraint C1).

The approximate computation of NCDs may result in identifying ICDs of a group of similar
alarms as NCDs. This case arises if two or more similar alarms have different ICDs (recall that
we compute transitive control dependencies of similar alarms as NCDs if their conditions are
not condition-wise equivalent). In this case, a repositioned alarm, obtained based on incorrectly
identified NCDs, may result in detection of a spurious error. Due to this, (1) educating the
tool user about the spurious error detection is required; and (2) we also report traceability links
between the repositioned and their corresponding original alarms. The traceability links help
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user to inspect the corresponding original alarms when a repositioned alarm is found to be an
error. We experimentally evaluate the spurious error detection rate incurred due to computing
the NCDs approximately. When the approximate ICDs/NCDs computation identifies NCDs of a
group of similar alarms as ICDs, NCD-based repositioning fails to reposition those alarms.

4.5 NCD-based Repositioning Technique: Algorithm
This section presents a technique for NCD-based repositioning of alarms. The technique com-
putes ICDs of alarms instead of NCDs: ICDs and NCDs of an alarm are mutually exclusive.
For efficiency, the technique is designed to compute ICDs of alarms while the alarms are reposi-
tioned: we do not compute ICDs separately before the repositioning is performed. In our tech-
nique, we accept all the tool-generated (original) alarms as input, and do not explicitly identify
groups of similar alarms prior to their repositioning. We begin describing the technique by de-
fining live alarm conditions similar to live variables [100].

Definition 4.5.1 (Live Alarm-condition). An alarm condition c is said to be live at a program
point p, if a path from p to the program exit contains an alarm φ reported at a program point q
with c as its alarm condition, and the path segment from p to q is definition free for any operand
of c. �

For example, in Figure 4.1b, condition ny 6= 0 is live at exit(n34) and entry(n34) due to the
alarms D42 or D48. However, the same condition is not live at entry(n33).

4.5.1 Live Alarm-conditions Analysis
4.5.1.1 Analysis Overview

In this analysis, alarm conditions of a given set of original alarms Φ are propagated in the back-
ward direction by computing them as live alarm-conditions (liveConds). The aim of this analysis,
that we call liveConds analysis, is to perform NCD-based repositioning of similar alarms in Φ
(Section 4.4.3). To this end, for every liveCond ` that we compute at a program point p, we also
compute the following information.

1. The original alarm(s) due to which ` is a liveCond at p. We refer to these alarms as related
original alarms (relOrigAlarms) of `.

2. The program point(s) that are later used to create repositioned alarms: a (new) reposi-
tioned alarm with ` as its alarm condition is created at each of these program points. In
other words, these program points denote the locations where the relOrigAlarms of ` are
to be repositioned. Thus, we refer to these program points as repositioning locations (re-
posLocations) of `. A reposLocation of ` is either the location of an original alarm due to
which ` is a liveCond at p, or a program point computed during its backward propagation
(discussed later (Section 4.5.1.3).

3. The transitive control dependencies of the reposLocations of ` such that (i) each of the
dependencies appears on a path from p to at least one reposLocations, and (ii) for every
dependency, there exists a condition-wise equivalent dependency on all the paths from p to
each of the reposLocations. We refer to these dependencies as relatedICDs of `, because
their conditions denote at least one safety condition of the alarms that will get created at
the reposLocations of `.
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To compute traceability links between the repositioned alarms and their corresponding ori-
ginal alarms, we compute the relOrigAlarms of ` reposLocation-wise: reposLocations of ` are
the program points where relOrigAlarms of ` are to be repositioned. We refer to the alarms com-
puted corresponding to a reposLocation p as relOrigAlarms of p. The relOrigAlarms of ` can be
obtained by collecting together the relOrigAlarms of reposLocations of `.

Recall the computation of avconds with their corresponding rel-alarms (Section 3.5.2) and
repositioning locations and conditions (Section 3.5.3). The computation of liveConds and their
associated values—values computed for liveConds—is similar to avconds and their associated
values, with difference in the direction in which they are propagated during their computation.
Note that, the values computed for liveConds and their relOrigAlarms form a partially ordered
set. However, the set of program points that can be computed for a liveCond as its reposLocations
(similar to the repositioning locations computed for an avcond) do not form a partially ordered
set. Moreover, the values computed for relatedICDs of liveConds do not form a partially ordered
set. Therefore, we do not call this analysis a data flow analysis (although it is very much similar to
a data flow analysis), instead call it an algorithm. Similar to the algorithm designed for avconds
analysis (Section 3.5.3.2), this liveConds analysis/algorithm still serves the purpose of computing
liveConds with the intended values (discussed next). Unlike rel-alarms and avconds analyses
which separately compute the rel-alarms and repositioning locations of avconds, in liveconds
analysis, we compute the reposLocations and relOrigAlarms of liveconds together.

4.5.1.2 Notations

Let 〈N , E〉 be the control flow graph of the program: N is the set of nodes and E is the set
of edges. Let P be the set of all program points in the program. Let Ec ⊂ E be the set of all
conditional edges in the CFG, i.e., the set of all transitive control dependencies of each p ∈ P .
Let L be the set of all alarm conditions of a given set of original alarms Φ. Thus, the liveConds
computed by the liveConds analysis at a program point are given by a subset of L.

For a liveCond ` computed at a program point p, the reposLocations of ` and their corres-
ponding relOrigAlarms5 are given by a subset of 2A where A = P × 2Φ. Thus, the values
computed for a liveCond `—its reposLocations (with their corresponding relOrigAlarms) and its
relatedICDs—are given by an element of X, where X = 2A × 2Ec . We use a function f : L → X
that maps a liveCond ` ∈ L to a pair of its reposLocationsA ∈ 2A and relatedICDsE ∈ 2Ec . We
denote the liveCond ` with the mapped values as tuple 〈`, A,E〉. Thus, at a program point p, the
liveConds analysis computes a subset of Lb, where Lb = {〈`, A,E〉 | ` ∈ L, f(`) = 〈A,E〉}.

For a given set S ⊆ Lb and A ∈ 2A, we define the following functions.

• condsIn(S) = {` | 〈`, A′, E′〉 ∈ S}, returns the set of all liveConds in given S.

• points(A) = {p | 〈p,Φ′〉 ∈ A}, returns the set of all reposLocations in A.

• origAlarms(A) = ∪〈p,Φ′〉∈A Φ′, returns the set of all relOrigAlarms in A.

4.5.1.3 Performing LiveConds Analysis

LiveConds analysis computes subsets of Lb flow-sensitively at every program point p ∈ P . Let
B be the powerset of Lb. We use nuB to denote the merging of the values flowing in at the exit of
a branching node n. This merge operation is similar to a meet operation performed in data flow

5Note that the related original alarms (relOrigAlarms) of a liveCond ` are computed corresponding to its reposLoca-
tions (reposLocation-wise).
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analysis. For simplicity of discussion, below we first describe the merging of values, and then
describe the computation of values at all the program points by the liveConds analysis.

Given S, S′ ∈ B :

S n uB S′ =
⋃

`∈
(

condsIn(S) ∪ condsIn (S′)
){ mergeInfo(`, n, S, S′) } (4.1)

mergeInfo(`, n, S, S′) =


merge(`, n,A,E,A′, E′) 〈`, A,E〉 ∈ S, 〈`, A′, E′〉 ∈ S′

〈`, A,E〉 〈`, A,E〉 ∈ S, ` /∈ condsIn(S′)

〈`, A′, E′〉 〈`, A′, E′〉 ∈ S′, ` /∈ condsIn(S)

(4.2)

merge(`, n,A,E,A′, E′) = meetInfo(`, n,A,A′, meetICDsInfo(E,E′)) (4.3)

meetICDsInfo(E,E′) =
{
e, e′

∣∣ e ∈ E, e′ ∈ E′, conditions of e and e′ are equivalent
}

(4.4)

meetInfo(`, n,A,A′, E) =

〈`, createReposAlarm (n,A,A′) , ∅〉
points(A) 6= points(A′),
E = ∅

〈`, A ∪A′, E〉 otherwise
(4.5)

createReposAlarm(n,A,A′) =
{
〈entry(n), origAlarms(A) ∪ origAlarms(A′)〉

}
(4.6)

The updates performed for the values associated with a liveCond `, during the merging of
values at a merge (meet) point, are described below.

1. When ` flows-in at the meet point through only one branch, its reposLocations and re-
latedICDs remain unchanged (Equation 4.2).

2. Following are the updates when (i) ` flows-in at the meet point through both the branches,
(ii) the reposLocations of ` flowing in through both branches are different; and (iii) the re-
latedICDs of ` flowing in through both the branches do not have a condition-wise equival-
ent dependency (Equations 4.2 and 4.5). The reposLocations of ` are updated to entry(n),
and the relOrigAlarms of this reposLocation are obtained by combining together all the
relOrigAlarms of ` flowing in through both the branches. Moreover, the relatedICDs of
` are updated to ∅. These updates denote creation of a new reposLocation entry(n): we
use entry(n) instead of the meet point exit(n) assuming that the branching nodes do not
update values of a variable.

3. In the cases other than (1) and (2), the reposLocations of ` flowing in from both the
branches are combined together without updating their respective relOrigAlarms, and the
relatedICDs are updated to the control dependencies that are condition-wise equivalent
(Equations 4.5 and 4.4).

To perform the liveConds analysis, we initialize the values at every program point with ∅.
Then we apply the equations shown in Figure 4.3, until the fixed point is computed (similar to
the maximum fixed point solution computed by a data flow analysis). These equations compute
liveConds in an intraprocedural setting, along with their relOrigAlarms, reposLocations, and
relatedICDs. Outn and Inn denote the values computed by the liveConds analysis, respectively,
at the exit and entry of a node n (Equations 4.7 and 4.9, respectively).

Equation 4.14 indicates that a liveCond ` is generated for every original alarm φ reported for
a node n, with ∅ as the relatedICDs of `, and entry(n) as the only reposLocation of `. When
the same liveCond l also flows in at entry(n) from a successor of n, (i) the relOrigAlarms of the
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Let m,n ∈ N ; e ∈ E ; φ, φ′ ∈ Φ; `, `′ ∈ L; S ∈ B.

Outn =


∅ n is End node

n
l

m∈pred(n)
B Edgee≡n→m (Inm) otherwise (4.7)

Edgee =n→m(S) = {〈`, A,E ∪ handleCtrlDep (e,A)〉 | 〈`, A,E〉 ∈ S} (4.8)

handleCtrlDep(e,A) =

{
{ e } e is a transitive control dependency of p ∈ points(A)

∅ otherwise

Inn = Genn(Survivedn) ∪ (Survivedn \GenRemoved(Survivedn)) (4.9)

Survivedn = processForICDsKill (n,Outn \Killn (Outn)) (4.10)

Killn(S) =

{
〈`, A,E〉

∣∣∣∣∣ 〈`, A,E〉 ∈ S, n contains a definition
of an operand of `

}
(4.11)

processForICDsKill(n, S) = {〈`, A, E \ killICDs(E,n)〉 | 〈`, A,E〉 ∈ S} (4.12)

killICDs (E,n) =

{
e

∣∣∣∣∣ e ∈ E, and n contains a definition
of an operand of cond(e)

}
(4.13)

Genn(S) =

{
createLiveCond(φ, n, S)

∣∣∣∣∣ n has alarm φ ∈ Φ

reported for it

}
(4.14)

createLiveCond(φ, n, S) =

createInfo (φ, n, {φ} ∪ origAlarms(R))
〈`, R,C〉 ∈ S,
cond(φ) = `

createInfo (φ, n, {φ}) otherwise

(4.15)

createInfo(φ, n,Φ′) =
〈
cond(φ), {〈entry(n),Φ′〉}, ∅

〉
GenRemovedn(S) =

{
〈`, A,E〉

∣∣∣∣∣ n has alarm φ ∈ Φ reported for it,
〈`, A,E〉 ∈ S, ` = cond(φ)

}
(4.16)

Figure 4.3: Data flow equations of liveConds analysis.

liveCond flowing in are also added to relOrigAlarms of the reposLocation entry(n) (Equation
4.15); and (ii) propagation of the values of l flowing in at entry(n) is stopped (Equation 4.16).
With this computation and the merge operation (Equation 4.1), we ensure that at any program
point there exists only one tuple for a liveCond and the values computed for it. Note that the
reposLocations of a liveCond are updated only when the liveCond is generated (Equation 4.14)
or the merge operation is performed (Equation 4.1).

Following are the updates to relatedICDs of a liveCond `. (i) When ` gets propagated through
a transitive control dependency e of its reposLocation, e is added to the relatedICDs of ` (Equa-
tion 4.8). (ii) For a relatedICD e of `, if an assignment node assigns values to a variable in
cond(φ), then e is removed from the relatedICDs of ` (Equation 4.12).

For example, in Figure 4.1b, nx 6= 0 and ny 6= 0 are two liveConds computed by the
liveConds analysis at entry(n34), i.e. in In34. At this program point, the reposLocations
(with their relOrigAlarms) and relatedICDs of the first liveCond, nx 6= 0, respectively are
{〈entry(n37), {D38, D45}〉} and ∅. Moreover, the reposLocations (with their relOrigAlarms)
and relatedICDs of the second liveCond, ny 6= 0, respectively are {〈entry(n41), {D42, D48}〉}
and ∅.
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Equations 4.14 and 4.11 respectively compute liveConds to be generated and killed at a node,
based on liveConds that flow in at the exit of the node. Moreover, Equation 4.12 denotes that
computation of ICDs associated with liveConds that flow in at the exit of the node. Hence,
these equations indicate that the computation of liveConds and their associated relatedICDs by
these equations is non-constant. The computation of reposLocations of liveConds is on similar
lines to the computation of repositioning locations of avconds: although the reposLocations are
computed as a set (of program points), their merging at a meet point is either union or same as
the merging of repositioning locations of an avcond (Equation 3.25). Moreover, the updating of
relatedICDs of a liveCond during the merge operation (Equation 3.25) denotes that either they
remain same or get updated to ICDs having equivalent conditions. The relatedICDs computed
for any liveCond at a program point are finite and unique. Therefore, the liveConds and their
associated values computed by liveConds analysis at any program point converge over multiple
iterations, i.e., the fixed point gets computed. Therefore, the analysis/algorithm terminates.

4.5.2 NCD-based Repositioning using LiveConds Analysis Results
Algorithm 3 presents steps to perform NCD-based repositioning using results of the liveConds
analysis described above (Section 4.5.1). These steps are similar to the steps of algorithm for
ORT (Algorithm 1 in Section 3.5.4). The main difference is in the first step: the first step of
Algorithm 3 differs from Step 1 of ORT in terms of the identification of liveConds to compute
repositioned alarms. The steps are described below.

4.5.2.1 Step 1 (Computation of Repositioned Alarms)

As discussed in Section 4.5.1, results of liveConds analysis are used to create repositioned alarms
for the original alarms Φ: repositioned alarms are the alarms resulting after NCD-based repos-
itioning of Φ. For a liveCond ` computed at a program point p, a repositioned alarm 〈`, q〉 is
created at each reposLocation q of ` (that is, ` is the condition of the alarm repositioned at every
reposLocation of `). Moreover, the relOrigAlarms of q are identified as the original alarms cor-
responding to the repositioned alarm 〈`, q〉, and thus use them to report the traceability links
between the repositioned alarm 〈`, q〉 and its corresponding original alarms.

At every program point p, we collect the liveConds that are liveConds at p but not at a
program point just prior to p, and use each of them to create repositioned alarms as described
above. The liveConds to be collected are the liveConds that are killed at every node n, given
by Killn(Outn). This approach to collect the liveConds removes redundancy in creating the
repositioned alarms. As a special case, we collect the liveConds that reach the procedure entry
(given by InStart), because a liveCond can reach this point (Start node) when all the variables in
the liveCond are local and uninitialized.

The above approach to collect the liveConds for creating the repositioned alarms ensures the
following: each liveCond ` that got generated at p due to an original alarm φp ∈ Φ gets collected
and used to create a repositioned alarm along every path starting at the program entry and ending
at p. Thus, along every path reaching p, there exists a repositioned alarm with ` = cond(φ) as its
alarm condition. As a consequence of this, the repositioned alarms corresponding to the original
alarm φp together dominate φp. This indicates that the repositioning of Φ thus obtained is safe,
i.e., the repositioning satisfies the constraint C1 (Section 4.4.3). Note that, the Equations 4.1,
4.8, and 4.12 together indicate that a repositioned alarm is created only when the constraint C2
is satisfied (Section 4.4.3).

The next steps are same as the steps in the algorithm for ORT (Algorithm 1).
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Algorithm 3 Steps to perform NCD-based repositioning of alarms.
global RC ;
procedure PERFORMNCDREPOSITIONING

RC = ∅;
/* Step 1 - computation of repositioned alarms (Section 4.5.2.1) */
for each node n ∈ N do

for each liveCond ` ∈ Killn(Outn) do
createReposAlarms(`, Outn);

end for
end for
/* Special case for the liveConds reaching procedure entry */
for each liveCond ` ∈ condsIn(InStart) do

createReposAlarms(`, InStart);
end for

/* Step 2 - simplification of the repositioned alarms (Section 4.5.2.2) */
RS ← ∅;
for each point p ∈ P do

C ← {〈c, p〉 | 〈c, p〉 ∈ RC};
RS ← RS ∪ simplifyConds(C);

end for

/* Step 3 - clustering of the repositioned conditions (Section 4.5.2.3) */
RE ← discardFollowers(RS);

/* Step 4 - postprocessing for fallback (Section 4.5.2.4) */
Rf ← performFallback(RE , Φ); /* Algorithm 2 */

return Rf ; /* the final repositioned alarms */
end procedure

procedure CREATEREPOSALARMS(`, S)
for each 〈`, A,E〉 ∈ S do

for each 〈q,Φ′〉 ∈ A do
RC = RC ∪ {〈`, q〉}; /* Creation of new repositioned alarms */
for each φ ∈ Φ′ do

createLink(r, φ); /* Add a traceability link from r to φ */
end for

end for
end for

end procedure

4.5.2.2 Step 2 (Simplification of Repositioned Alarms)

Let RC be the set of repositioned alarms resulting after Step 1. In this step, every program point
is processed to simplify the repositioned alarms R′ ⊆ RC at that point. The simplification is
performed on conjunction of the conditions of repositioned alarms that are at the same point
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1 void f1(int p, int q){
2 int arr[10], i = lib1();
3 if(p < q){
4 i = lib();
5 arr[i] = 0; A5

6 }
7 //assert(0 ≤ i ≤ 9); R7

8 if(p == 5)
9 arr[i] = 3; A9

10
11 if(q > 2)
12 arr[i] = 4; A12

13 }

(a) Clustering of the repositioned alarms

20 void f2(int p, int q){
21 int i, arr[10];
22 i = lib1();
23 if(p < 5){
24 if(q == 5)
25 i = lib2();
26 arr[i] = 1; A26

27 }
28 else{
29 if(q == 1)
30 i = lib3();
31 arr[i] = 2; A31

32 }
33 }

(b) Applying fallback

Figure 4.4: Examples to illustrate postprocessing of the repositioned alarms.

and their conditions involve checking values of the same expression. The traceability links for
a condition resulting after the simplification are obtained by merging traceability links of the
conditions that got simplified.

In Algorithm 3, we assume that the function simplifyConds(C) accepts repositioned alarms
C to be simplified and returns the conditions after their simplification. Moreover, we assume that
it accordingly updates traceability links of the conditions.

4.5.2.3 Step 3 (Clustering of Repositioned Alarms)

Let RS be the set of all repositioned alarms resulting after the simplification step (Step 2). As a
repositioned alarm can be a dominant alarm for another repositioned alarm, we postprocess RS

for their clustering using the clustering techniques [123, 150, 223]. As an example, consider the
code in Figure 4.4a that has three AIOB alarms reported at lines 5, 9, and 12. Corresponding to
these original alarms, the repositioned alarms resulting after the simplification step are,
RS = {〈0 ≤ i ≤ 9, entry(n8)〉, 〈0 ≤ i ≤ 9, entry(n5)〉}.

Observe that the second repositioned alarm in RS is a follower in presence of the first one
(shown as an assertion on line 7). Therefore, to further reduce the number of alarms, (1) we
postprocess the repositioned alarms RS by applying the clustering techniques [124, 150, 223],
and (2) discard the repositioned alarms that are identified as followers. Applying this step to the
two example repositioned alarms, discards the follower alarm, and reduces the number of alarms
in RS by one.

When a repositioned condition is identified as a follower and discarded, its traceability
links are transferred to its dominant alarm(s). In Algorithm 3, we assume that the function
discardFollowers(RS) performs clustering of given set of alarms RS by implementing a cluster-
ing technique [124, 150, 223]. Moreover, we assume that the function returns only the dominant
alarms, and transfers traceability links of the follower alarms to their respective dominant alarms.
Let RE be the set of repositioned alarms resulting after this clustering step.
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4.5.2.4 Step 4 (Postprocessing for Fallback)

As a limitation of our technique similarly to ORT, in rare cases, repositioning of a given set of
original alarms can result into more repositioned alarms than the original alarms. We illustrate
this using the two AIOB alarms A26 and A31 shown in Figure 4.4b. The repositioning of these
two alarms after Step 1 (Section 4.5.2.1) results in the three repositioned alarms, RC = {〈0 ≤
i ≤ 9, entry(n26)〉, 〈0 ≤ i ≤ 9, entry(n31)〉, 〈0 ≤ i ≤ 9, entry(n23)〉}. Below we describe the
liveConds based on which those repositioned alarms are created.

1. The repositioned alarm 〈0 ≤ i ≤ 9, entry(n26)〉 gets created because 0 ≤ i ≤ 9 is
liveCond at exit(n25) with entry(n26) as its single reposLocation, and the same condition
is not liveCond at entry(n25).

2. The repositioned alarm 〈0 ≤ i ≤ 9, entry(n31)〉 gets created because 0 ≤ i ≤ 9 is
liveCond at exit(n30) with entry(n31) as its single reposLocation, and the same condition
is not liveCond at entry(n30).

3. The repositioned alarm 〈0 ≤ i ≤ 9, entry(n23)〉 gets created because 0 ≤ i ≤ 9 is
liveCond at exit(n22) with entry(n23) as its single reposLocation, and the same condition
is not liveCond at entry(n22). The reposLocation, entry(n23), is created during the meet
(merge) performed at exit(n23), as the liveCond 0 ≤ i ≤ 9 flowing-in at the meet point
from the two branches has different reposLocations (i.e., entry(n26) and entry(n31)).

Processing the three repositioned alarms, RC , using Steps 2 and 3 for their simplification
and clustering does not reduce their number, i.e., RC = RS = RE . In this example, the re-
positioning increases the number of alarms by one. Therefore, we identify such cases where
the repositioning of a group of similar alarms Φ′ ⊆ Φ results in more repositioned alarms than
Φ′; and then apply fallback in these cases: we report Φ′ instead of reporting the corresponding
repositioned alarms. For the example discussed above, finally A26 and A31 get reported instead
of the three repositioned alarms. The algorithm to perform fallback in this step is the same as the
fallback algorithm presented for ORT (Algorithm 2).

Note that the above limitation may occur only when the similar alarms being repositioned
have different data dependencies. Avoiding such similar alarms in the input to NCD-based re-
positioning will miss merging a few similar alarms, e.g., the similar alarms A5, A9, and A12

discussed above (Section 4.5.2.3). Thus, as we intend to reposition more similar alarms together,
we accept all tool-generated alarms as input to NCD-based repositioning and resort to fallback
in such limitation cases. That is, in this fallback step, when NCD-based repositioning of a group
of similar alarms results in equal or higher number of repositioned alarms, we report the original
alarms instead of the repositioned ones. Note that in this step, unlike in ORT fallback step, we
also perform fallback when the repositioning of a group of similar alarms results in equal num-
ber of the repositioned alarms. We perform fallback in such cases, because we prefer to report
the repositioned alarms closer to their corresponding original alarms (Section 4.4.3), whereas in
ORT we reposition the alarms closer to their cause points.

Applying this fallback step ensures that the repositioning obtained using the technique satis-
fies the constraint C3 (Section 4.4.3). Thus, our technique never increases the number of alarms
reported to the user than the input original alarms.

4.5.3 Properties of the NCD-based Repositioning Technique
In this section we prove properties of Algorithm 3.
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Theorem 4.5.1. Given a set of alarms Φ, repositioning of Φ obtained using the NCD-based
repositioning technique is safe.

Proof. Let φp ∈ Φ be an original alarm. When the condition of the alarm, cond(φp) is gener-
ated as a liveCond at p, its reposLocation is p (Equation 4.14). This reposLocation is updated
only at the meet operation during the backward propagation of cond(φp) and only when the
reposLocations flowing-in through both the branches are different (Equation 4.1). Thus, the re-
posLocations of the liveCond cond(φp) at a program point q includes p or the meet points that
together dominate p (because cond(φp) is computed as liveCond).

The reposLocations of cond(φp) at every program point where cond(φp) is killed, are used to
create repositioned alarms: a repositioned alarm is created with cond(φp) as its alarm condition
at each of its reposLocations. Collecting the liveConds for alarms repositioning this way (i.e., by
Step 1) ensures the following: (1) each liveCond ` generated at a program point p gets collected
and used at least once along every path starting at program entry and ending at p, and (2) ` is
repositioned at each of its reposLocations. This is sufficient to guarantee that for every original
alarm φp there exists a repositioned alarm along every path reaching φ. Thus, repositioning
performed is safe: all the behaviors of an original alarm φp are shown by its corresponding
repositioned alarm(s). In other words, when φp is an error, at least one of its corresponding
repositioned alarm is also an error. Thus, the repositioning obtained by Step 1 is safe: detection
of an error is not missed. Postprocessing of the repositioned alarms using Steps 2, 3, and 4 does
not affect detection of an error by the repositioned alarms. Therefore, the final repositioning
obtained by the NCD-based repositioning technique is safe.

Theorem 4.5.2. Given a set of alarms Φ, repositioning of Φ obtained using the NCD-based
repositioning technique satisfies the three criteria of NCD-based repositioning.

Proof. Constraint C1: Proof for satisfying this constraint by the repositioning obtained by the
technique follows from Theorem 4.5.1.
Constraint C2: Equations 4.1, 4.8, and 4.12 together indicate that a new reposLocation q is
created at a meet point only when all the paths between q to its corresponding original alarms
(relOrigAlarms) do not have ICDs of the alarms. A new repositioned alarm is created at this
location q or at the program points of the original alarms. As the constraint C2 is satisfied in
both the cases, the repositioning obtained using the technique also satisfies the constraint C2.
Constraint C3: Postprocessing the repositioned alarms for applying fallback in the cases that
does not reduce alarms ensures that repositioning constraint C3 is satisfied.

4.6 Empirical Evaluation
In this section we evaluate the NCD-based repositioning technique (Algorithm 3) in terms of the
reduction in the number of alarms. The evaluation is performed using alarms generated by TCS
ECA on total 32 open source and industry applications.

4.6.1 Experimental Setup
Implementation We implemented the NCD-based repositioning technique (Algorithm 3) us-
ing the analysis framework of our commercial static analysis tool, TCS ECA [197]. The analysis
framework supports analysis of C and COBOL programs. The framework allows to implement
data flow analyses using function summaries. We implemented a liveConds analysis to compute
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liveConds inter-procedurally and by considering transitivity. In the inter-procedural implement-
ation, the data flow analysis is solved in bottom-up order only: liveConds are propagated from a
called-function to its callers but not from a caller-function to the called functions.

Selection of Applications and Alarms To evaluate the applicability and performance of the
NCD-based repositioning technique in different contexts, we select in total 32 applications that
belong to the following three categories: (i) 16 open source applications written in C and previ-
ously used as benchmarks for evaluating ORT (Section 3.6.1.2); (ii) 11 industry C applications
from the automotive domain, of which four were previously used as benchmarks to evaluate ORT
(Section 3.6.1.2); and (iii) 5 industry COBOL applications from the banking domain.

Compared to the applications selected during the pilot study in Section 4.3 (resp. the eval-
uation of ORT in Section 3.6), the above selection includes 16 (resp. 12) additional industry
applications. The inclusion of additional applications was to evaluate NCD-based repositioning
on applications that were not analyzed/studied previously, and thus to avoid any bias getting
introduced to the set of applications used earlier.

We analyzed the applications using TCS ECA for five commonly checked categories of run-
time errors (safety properties): array index out of bounds (AIOB), division by zero (DZ), in-
teger overflow underflow (OFUF), uninitialized variables (UIV), and illegal dereference of a
pointer (IDP). The IDP property is not applicable for COBOL applications as COBOL programs
do not have pointers. The tool-generated alarms are postprocessed using the alarms clustering
techniques [124, 150] and then the resulting dominant alarms are postprocessed for their repos-
itioning using ORT. The resulting repositioned alarms are provided as input to the NCD-based
repositioning technique. All the applications in the three sets were analyzed and the alarms were
postprocessed—clustering, repositioning using ORT, and the NCD-based repositioning—using
a machine with i7 2.5GHz processor and 16GB RAM.

4.6.2 Evaluation Results
Table 4.2 presents the evaluation results as per the categories of the applications (open source and
industry). The column Input Alarms presents the number of alarms that were given as input to
the NCD-based repositioning technique, while the column % Reduction presents the percentage
reduction achieved in the number of alarms by the technique. The evaluation results indicate that,
compared to ORT, the NCD-based repositioning technique reduces the number of alarms on the
three sets of applications—open source, C industry, and COBOL industry—by up to 23.57%,
29.77%, and 36.09% respectively. The median reductions are 9.02%, 17.18%, and 28.61%,
respectively. Moreover, the average reductions respectively are 10.16%, 8.97%, and 27.68%.

The column Time in Table 4.2 presents the time needed to (i) analyze the applications for
those five properties, and (ii) postprocess the TCS ECA-generated alarms using the clustering
and the state-of-the-art repositioning techniques. The columns % Overhead presents the per-
formance overhead incurred due to the extra time taken by NCD-based repositioning technique.
We believe the performance overhead added is acceptable because the alarms reduction can be
expected to reduce the users’ manual effort which is much more expensive than machine time.
Moreover, the reduced number of alarms may result in performance gain when the alarms are
postprocessed for automated elimination of false positives using time-expensive techniques like
model checking (discussed in Section 5.4). The reduction in the number of alarms reduces the
number of assertions generated corresponding to the alarms, and therefore the overall number of
model checking calls to be made. The reduction in the number of model checking calls reduces
time taken for the automated false positives elimination.
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Table 4.2: Experimental results for NCD-based clustering

(a) Open source applications

Application
Size
(KL
OC)

Input
Alarms

%
Redu-
ction

Time
(mins)

%
Over-
head

archimedes-0.7.0 0.8 2275 10.55 1.9 24.5
polymorph-0.4.0 1.3 25 12.00 0.6 27.5
acpid-1.0.8 1.7 25 8.00 0.4 23.5
spell-1.0 2.0 71 5.63 0.8 18.4
nlkain-1.3 2.5 319 1.57 0.5 15.7
stripcc-0.2.0 2.5 229 8.30 1.0 16.8
ncompress-4.2.4 3.8 92 3.26 0.5 23.6
barcode-0.96 4.2 1064 9.02 2.4 17.7
barcode-0.98 4.9 1310 9.08 2.8 15.7
combine-0.3.3 10.0 819 23.57 4.3 55.3
gnuchess-5.05 10.6 1783 15.09 8.6 95.4
antiword-0.37 27.1 613 9.95 26.7 72.2
sudo-1.8.6 32.1 7433 8.69 133.2 22.5
uucp-1.07 73.7 2068 6.58 21.6 7.5
ffmpeg-0.4.8 83.7 45137 10.41 239.0 11.6
sphinxbase-0.3 121.9 1516 5.67 6.5 17.3

(b) Industry applications (C & COBOL)

Appli-
cation

Size
(KL
OC)

Input
Alarms

%
Redu-
ction

Time
(mins)

%
Over-
head

C App 1 3.4 383 12.79 1.8 13.3
C App 2 14.6 422 2.37 4.5 15.8
C App 3 18.0 441 22.00 4.0 12.4
C App 4 18.1 1055 20.47 5.6 23.7
C App 5 18.3 535 23.55 4.7 12.5
C App 6 30.5 1001 29.77 5.1 23.4
C App 7 30.9 1379 17.19 42.3 2.8
C App 8 34.6 23404 4.28 186.9 17.8
C App 9 111.0 2241 12.72 7.0 22.2
C App 10 127.8 987 12.97 1.8 21.7
C App 11 187.2 4494 18.09 36.2 36.7

COBOL 1 11.4 341 5.57 1.1 78.3
COBOL 2 11.9 601 28.62 7.1 20.9
COBOL 3 16.7 499 0.40 6.4 179.4
COBOL 4 26.8 1158 32.21 25.7 63.0
COBOL 5 37.8 1826 36.09 3.7 80.0

Following we describe a few other observations that we made during the evaluation.

• We separately measured reduction in the number of alarms generated for each of the prop-
erties selected. The median reductions computed property-wise on all the applications, are
25.8% (AIOB), 45.72% (DZ), 6.89% (OFUF), 18.17% (UIV), and 10.3% (IDP).

• The fallback (Section 4.5.2.4) got applied in 2592 instances during the NCD-based repos-
itioning of the total 105,546 alarms.

• We measured percentage of similar alarms among the alarms resulting from applying the
NCD-based repositioning technique to the selected open source applications. Results of
this study are shown under After NCD-based repositioning in Table 4.3 (right side). For
comparison purpose, we also show the percentage of similar alarms among alarms result-
ing from the application of clustering and ORT, i.e., before NCD-based repositioning. The
results shown on the left side are the same as those discussed in the pilot study (Section
4.3). The results indicate that around 43% of the dominant alarms resulting after NCD-
based repositioning on the open source applications are found to be similar, and 64% of
these similar alarms appear in the repositioning limitation scenarios. Our manual analysis
of 200 alarms appearing in these limitation scenarios showed that they are not merged due
to (i) presence of common safety conditions (ICDs), (ii) limitations in our implementation
to compute the liveConds inter-procedurally, or (iii) the fallback got applied.
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Table 4.3: Percentage of similar alarms among the alarms resulting after applying ORT (left side)
and alarms resulting after applying NCD-based repositioning (right side).

Application
After applying ORT

After applying
NCD-based repositioning

Total
Alarms

%
Similar
Alarms

%
Same
Data

Depen-
dencies

%
Different

Data
Depen-
dencies

Total
Alarms

%
Similar
Alarms

%
Same
Data

Depen-
dencies

%
Different

Data
Depen-
dencies

archimedes-0.7.0 2275 51.60 34.24 65.76 2035 43.29 11.80 88.20
polymorph-0.4.0 25 28.00 100.00 0.00 22 13.64 100.00 0.00
acpid-1.0.8 25 44.00 45.45 54.55 23 39.13 22.22 77.78
spell-1.0 71 25.35 44.44 55.56 67 17.91 16.67 83.33
nlkain-1.3 319 53.92 36.63 63.37 314 52.87 34.34 65.66
stripcc-0.2.0 229 66.81 84.31 15.69 210 60.95 82.81 17.19
ncompress-4.2.4 92 51.09 53.19 46.81 89 48.31 48.84 51.16
barcode-0.96 1064 47.09 61.68 38.32 968 38.84 52.66 47.34
barcode-0.98 1310 46.64 60.72 39.28 1191 38.29 49.56 50.44
combine-0.3.3 819 66.42 71.14 28.86 626 47.76 44.82 55.18
gnuchess-5.05 1783 51.65 55.27 44.73 1514 40.55 31.76 68.24
antiword-0.37 613 32.79 60.70 39.30 552 26.45 45.89 54.11
sudo-1.8.6 7433 43.72 54.18 45.82 6787 35.72 39.44 60.56
uucp-1.07 2068 51.50 70.23 29.77 1932 45.91 63.59 36.41
ffmpeg-0.4.8 45137 51.99 82.33 17.67 40439 44.34 72.98 27.02
sphinxbase-0.3 1516 54.68 49.70 50.30 1430 50.42 38.70 61.30
Total 64779 50.89 74.55 25.45 58199 43.12 63.76 36.24
1. The column Total Alarms shows the total number of alarms generated by the techniques for

the selected five properties.
2. The column % Similar Alarms presents percentage of similar alarms in the total alarms.
3. The column % Same Data Dependencies (resp. % Different Data Dependencies) presents

percentage of the similar alarms that have same data dependencies (resp. different data depend-
encies).

4.6.3 Evaluation of Spurious Error Detection by Repositioned Alarms
As discussed in Section 4.4.3, a repositioned alarm obtained through repositioning based on the
approximated NCDs can be a spurious error. A repositioned alarm is a spurious error when a
NCD computed with our approach is actually an ICD. To measure the spurious error detection
rate, we manually analyzed 150 repositioned alarms that were created due to merging of two or
more similar alarms: each repositioned alarm has two or more original alarms corresponding to
it. The analyzed alarms were randomly selected from the repositioned alarms generated on the
first nine open source applications (Table 4.2a) and two industry applications (C applications 4
and 7 in Table 4.2b). These selected 150 repositioned alarms have in total 482 original alarms
corresponding to them. In our manual analysis, we checked each of the selected alarms whether
it is a spurious error. We found three repositioned alarms to be spurious errors, and thus, the
spurious error detection rate to be 2%. This indicates that our approach to compute NCDs/ICDs



4.7. Related Work 97

of similar alarms is effective, and for the analyzed cases, the NCD-based repositioning technique
reduced the number of alarms by 70% but at the cost of detecting a few spurious errors (2%).

4.7 Related Work
As NCD-based repositioning presented in this chapter overcomes the limitation of ORT, we
compared and evaluated our NCD-based repositioning technique against it.

On similar lines to alarms repositioning, Cousot et al. [39] have proposed hoisting necessary
preconditions for providing the preconditions required by the Design by Contract [145]. Fur-
thermore, Muske et al. [154] have proposed grouping related/similar alarms based on similarity
of modification points. In their approach [150], as the grouped alarms are inspected using val-
ues at the modification points of alarm variables, the inspection often finds spurious errors when
the alarms are actually false positives solely due to their transitive control dependencies (ICDs).
However, none of these techniques [39, 150, 154] identify conditional statements (control de-
pendencies) that are non-impacting to the similar alarms.

Kumar et al. [116] identify conditional statements that are value-impacting to alarms. How-
ever, the notion of value-impacting conditional statements (resp. non value impacting conditional
statements) is different from the ICDs (resp. NCDs) of alarms. That is, a transitive control de-
pendency identified as non value-impacting to an alarm can actually be an ICD of the alarm, and
a control dependency identified as value-impacting can be an NCD. For example, in Figure 4.2,
the control dependency n10 → n11 of A11 is ICD, whereas the technique by Kumar et al. [116]
identifies the same dependency is non-value impacting. Preserving such ICD(s) on the value slice
generated for an alarm can help to verify/prove that the assertion generated for the alarm holds.
Otherwise, verification of the same assertion results in a counter-example. To the best of our
knowledge, no other static analysis technique or alarms postprocessing technique has formally
proposed the notion of NCDs/ICDs of alarms or leveraged them in alarms postprocessing.

As the NCD-based clustering of alarms is orthogonal to other alarms postprocessing tech-
niques, it can be applied in conjunction with those. We believe that these combinations will
provide more benefits as compared to the benefits obtained by applying them individually.

4.8 Conclusion
In this chapter, we addressed the limitation of the original repositioning technique (ORT). We
observed that the conservative assumption about controlling conditions of alarms leads to the
limited reduction in number of alarms by ORT. Based on this observation, we have proposed the
notion of NCDs of alarms, and NCD-based repositioning to further reduce the number of alarms.

Computing non-impacting control dependencies of alarms and taking into account their
effect during repositioning of the alarms helps to improve the reduction obtained by the
repositioning.

We performed an evaluation of NCD-based repositioning using a large set of alarms on three
kinds of applications, 16 open source C applications, 11 industry C applications, and 5 industry
COBOL applications. The evaluation results indicate that, compared to ORT, NCD-based repos-
itioning reduces the number of alarms respectively by up to 23.57%, 29.77%, and 36.09%. The
median reductions are 9.02%, 17.18%, and 28.61%, respectively.
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Compared to ORT, NCD-based repositioning reduces the number of alarms by up to
36.09% and with median reduction of 10.48%.

Our approach to compute approximated NCDs of similar alarms is based on the observation
that not all controlling conditions of an alarm are actually impacting to the alarm. In the ap-
proach, a controlling condition of an alarm in a set of similar alarms is identified as ICD/NCD
of the alarm depending on whether each of the similar alarms has a condition-wise equivalent
controlling condition. This approximation approach is required, because a high percentage of
alarms resulting after ORT are still similar, and therefore reducing their number is important.

The existing alarms clustering and repositioning techniques, being conservative, still report
high percentage of similar alarms. During the evaluation of the technique, our manual analysis
showed that the approach to approximately compute NCDs of similar alarms helped to reduce
the number of alarms by 70%. However, the approach resulted in 2% of the repositioned alarms
being spurious errors. Therefore,

Our approach to approximately compute NCDs of similar alarms is effective: the approx-
imation helps to safely reduce the number of alarms while it detects only a few repositioned
alarms as spurious errors.

We believe that NCD-based repositioning, being orthogonal to many of the existing ap-
proaches to postprocess alarms, can be applied in conjunction with those approaches. We plan
to explore a few more techniques to (precisely) compute NCDs for alarms (similar as well as
dissimilar alarms). Precise computation of NCDs of alarms, compared to the approximation ap-
proach, can help to reduce more number of alarms and that too without detection of spurious
errors by the repositioned alarms.



Chapter 5

Postprocessing of Alarms Generated on Partitioned Code

Static analysis tools used to detect common programming errors are known to generate a large
number of alarms. Moreover, these tools often fail to analyze large systems. Partitioning, split-
ting a large system into multiple smaller parts (called partitions), is commonly used to scale up
these tools. Due to the conservative approach taken during analysis of the partitions, the number
of alarms generated by static analysis tools on partitioned-code increases further. We find that,
(1) around 45% alarms generated on partitioned-code are generated for POIs that are common
to multiple partitions (called common-POI alarms), and (2) postprocessing these common-POI
alarms partition-wise, including manual inspection, incurs redundancy. Moreover, in our study
of the alarms postprocessing techniques (Section 2.6), we find that none of the alarms postpro-
cessing techniques considers the nature of common-POI alarms generated on partitioned-code.

To reduce the redundancy in postprocessing of common-POI alarms, we present a technique
that takes into account that common-POI alarms are generated for the same POI. First we group
common-POI alarms together, and propose a method to inspect them based on functions (i.e.,
sub-routines) identified for each group. The functions identified for each group are the topmost
functions which (1) are directly or indirectly called by each of the partitions in which the grouped
alarms are generated, and (2) directly or indirectly call the function containing the POI of the
alarms. Inspection of a grouped alarm in the context of the identified functions guarantees the
same result for the other alarms in the same group when they are inspected in the context of
the same functions. Then, we postprocess common-POI alarms for automated false positives
elimination (AFPE). Existing AFPE techniques help to eliminate false positives, however they
are known to have poor efficiency. To address the problem of poor efficiency, we reuse AFPE
results generated for common-POI alarms across partitions. The reuse of results allows to reduce
the number of calls to model checker, and thus to improve efficiency.

Our empirical evaluation indicates that (1) the proposed method to group and inspect common-
POI alarms reduces manual inspection effort by 60%; and (2) the reuse of AFPE results across
partitions reduces the total AFPE time by up to 56%, with median reduction of 12.15%.
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5.1 Background
In this section, we describe code partitioning and alarms generated through analysis of partitioned-
code.

Static analysis tools have shown promise in detecting code anomalies and common program-
ming errors [12, 14, 21, 159, 206] and even certification of safety-critical systems [24, 52, 112].
However, these tools often fail to analyze a large system as a whole [59, 78]. This is because,
analysis of the whole-system demands more memory and time resources than available, and
in practice, satisfying this demand is not always feasible. Partitioning is commonly used to
scale static analysis tools to very large systems [59, 99]. Scalability is achieved by splitting a
large system into smaller code parts, called partitions. A large system usually constitutes many
functionalities (designated tasks) implemented independently of or in communication with other
functionalities. The system code implementing such a functionality is considered as a partition,
and is denoted by the single sub-routine (function) that is entry to the code that implements the
functionality. Each partition formed, being smaller and less complex than the original system,
is analyzable by static analysis tools. The partitions of a system can be provided as input to the
tools, i.e., the partitioning is performed manually [59], or can be automatically identified as un-
called functions in the code [99], or mixture of both. Note that any two partitions created, either
manually or automatically, can be overlapping (resp. mutually exclusive) if the sets of functions
transitively called1 by the two partitions are not disjoint (resp. are disjoint).

In general static analysis tools are known to generate a large number of alarms [37, 92, 120].
Due to the following two reasons, alarms generated on partitioned-code are more in number than
the alarms that would be generated on the corresponding non-partitioned code.

1. Conservative Approach for Shared Variables: During analysis of partitioned-code, each
partition is analyzed separately to produce results specific to that partition. To ensure
soundness of the analysis results, analysis of each partition assumes all values are possible
for the variables that are also modified by other partitions (shared variables). The conser-
vative approach adopted for shared variables increases the number of alarms generated on
partitioned-code compared to the corresponding non-partitioned code.

2. Presence of Common-POI Alarms: A point-of-interest (POI) to be checked by a static
analysis tool can appear in multiple partitions, because the function containing the POI
can be transitively called in multiple partitions, and an alarm can be generated for the POI
in two or more partitions. We refer to the alarms that are generated for the same POI
but appearing in multiple partitions as common-POI alarms. The presence of common-
POI results in generating more alarms on partitioned-code than the number of alarms that
would be generated on the corresponding non-partitioned code: alarms generated on the
partitioned-code is the union of the sets of alarms generated on each of the partitions.

For example consider the partitioned-code in Figure 5.1, having two partitions p1 and p2.
Functions foo and bar are common to these partitions, as they are transitively called in
both the partitions. Analyzing partition p1 using a static analysis tool for array index out
of bounds (AIOB) and division by zero (DZ) verification properties generates one AIOB
and one DZ alarm. Henceforth, we use notation 〈φ, p〉 to denote an alarm φ generated in
partition p. The two alarms generated in p1 are 〈A30, p1〉 and 〈D34, p1〉. Analysis of the
other partition, p2, for those two properties generates four alarms: 〈D14, p2〉, 〈A30, p2〉,

1We call a function g is transitively called by a function f if f calls g directly or indirectly.
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1 // Partition p1
2 void p1(){
3 int index = lib1();
4 foo(index, 10);
5 ...
6 }
7
8
9 // Partition p2

10 void p2(){
11 int t, index = lib2();
12 foo(index, lib3());
13
14 t = 1 / index; 〈D14,p2〉
15 ...
16 }

19 // Code common to the two partitions
20 void foo(int p, int q){
21 const int arr[]={0,13,28,46,63};
22 unsigned int i= lib3(), j= lib4();
23 if (i < 5 && j < i)
24 bar(p, q, arr[i]-arr[j]);
25 }
26
27 int bar(int x, int y, int z){
28 int t1, t2, tarr[10];
29
30 tarr[x] = 0; 〈A30,p1〉 〈A30,p2〉
31
32 t2 = 30 / y; 〈D32,p2〉
33
34 t1 = 1 / z; 〈D34,p1〉 〈D34,p2〉
35 }

Figure 5.1: Examples of alarms generated on partitioned code. An alarm φ generated in partition
p is shown using 〈φ, p〉. The alarms shown in dotted rectangles are unique alarms while the other
alarms are common-POI alarms.

〈D34, p2〉, and 〈D32, p2〉. When the code is not partitioned, i.e., when those two functions
(partitions) p1 and p2 are called from the same application, in addition to the two alarms
generated at lines 14 and 32, only one alarm gets generated at lines 30 and 34.

We use unique alarms to refer to the alarms other than common-POI alarms. For example,
〈D32, p2〉 is a unique alarm: although the alarm’s POI also appears in partition p1, an
alarm is not generated in p1 for the same POI. As another example, 〈D14, p2〉 is a unique
alarm, because its POI appears only in one partition p2.

We use context of a function to refer to the code in that function and the functions transitively
called by that function. The values passed to parameters of a function are assumed to be outside
the context of the function. Since a partition is denoted using a function, context of a partition is
same as context of the function that denotes the partition.

5.2 Motivation
In this section, we describe the problem of redundancy in postprocessing of common-POI alarms
generated during analysis of partitioned-code, and present an overview of our solution proposed
to address this redundancy problem.

5.2.1 The Problem
As discussed above, analysis of partitioned-code increases the number of alarms as compared to
the corresponding non-partitioned code. To measure percentage of common-POI alarms in the
alarms generated on partitioned-code, we performed a pilot study using alarms generated by TCS
ECA [197] on two industry partitioned-code applications. Section 5.5.1 presents details of the
two applications. In the study, we found that 45% of alarms generated on the partitioned-code
are common-POI alarms.
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Below we illustrate redundancy in postprocessing common-POI alarms using existing tech-
niques, by referring to the alarms shown in Figure 5.1. We limit the scope of postprocessing
only to common-POI alarms and the following two postprocessing approaches: simplification of
manual inspection and automated false positives elimination (AFPE).

1. Redundancy in Manual Inspection of Alarms: All the common-POI alarms generated
on partitioned code need to be inspected manually, because detection of an error by each
common-POI alarm varies depending on the partition in which it is generated. For ex-
ample, 〈A30, p1〉 can be an error while 〈A30, p2〉 can be a safe program point2, and vice
versa. Moreover, a unique alarm requires inspecting it in the context of the partition in
which it is generated. Therefore, the alarms generated on partitioned code are inspected
partition-wise.

The partition-wise manual inspection of common-POI alarms results in inspecting the
same code repeatedly and thus incurs redundancy. For example, inspection of 〈D34, p1〉
requires identifying values of x at line 34, and the identification requires traversing the
code backward. During the inspection, the alarm gets determined as a false positive con-
sidering the code in function bar. The denominator in the alarm takes values computed by
the expression arr[i] - arr[j] at line 24. Due to the subtraction of two different values in
the array arr, the expression always computes non-zero values. Along similar lines, the
other common-POI alarm, 〈D34, p2〉, also gets determined as a false positive considering
the same code in function bar.

Note that, the result of inspection of 〈A30, p1〉 and 〈A30, p2〉 depends on their partitions,
because the values of the index variable x are taken transitively from the values returned by
the calls to two different libraries at lines 3 and 11. Inspecting these two alarms separately
in their partitions incurs partial redundancy: traversing the code backward from the alarm
POI to the start of function foo is common in inspection of the two alarms.

2. Redundancy in AFPE: To improve scalability of model checker used, AFPE techniques
implement context expansion [34, 153, 174] (see Section 5.4.1). We find that applying con-
text expansion to common-POI alarms incurs redundancy. For example, postprocessing
〈D34, p1〉 using the AFPE techniques results in verifying the corresponding assertion in
two verification contexts: first bar and then foo. The alarm gets eliminated after verifica-
tion in context foo. Similarly, the same two verification calls are also made for 〈D34, p2〉.
This indicates applying AFPE techniques to common-POI alarms results in making re-
peated verification calls, and thus the elimination incurs redundancy. Section 5.4.2 dis-
cusses the redundancy problem in detail.

In our survey of the techniques proposed for postprocessing of alarms (Section 2.6), we
found that none of the postprocessing techniques specifically postprocess alarms generated on
partitioned-code. To eliminate the redundancy in manual inspection and AFPE of common-POI
alarms (discussed above), we ask the following research questions.

RQ 4: How can we reduce redundancy in manual inspection of common-POI alarms?

2We assume that, the library call lib1() (resp. lib2()) returns values such that the correspondingly generated common-
POI alarm 〈A30, p1〉 (resp. 〈A30, p2〉) can be a false positive.
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RQ 5: How can we reduce redundancy in AFPE applied to common-POI alarms?

5.2.2 Our Solution
To reduce the redundancy in postprocessing of common-POI alarms, we postprocess them by
taking into account that they are generated for the same program point. First, aiming at reducing
the redundancy in manual inspection of common-POI alarms, we group the alarms together and
identify functions for each group. The functions identified for each group are the topmost func-
tions which (1) are directly or indirectly called by each of the partitions in which the grouped
alarms are generated, and (2) directly or indirectly call the function containing the POI of the
alarms. The grouping and identification of the functions for each group is such that inspection of
a grouped alarm in the context of the identified functions guarantees the same result for the other
alarms in the same group when they are inspected in the context of the same functions.

Based on the groups formed and functions identified for them, we propose a method to in-
spect the grouped common-POI alarms. The proposed method helps to safely avoid redundant
inspection of common-POI alarms: when a grouped alarm is identified as a false positive in the
context of each of the functions identified for the group, all the alarms in its group are also false
positives.

Then, we postprocess common-POI alarms using AFPE techniques. To reduce the redund-
ancy in AFPE, we reuse AFPE results of the common-POI alarms across partitions. The reuse of
results allows to reduce the number of calls to the model-checker, and thus to improve efficiency.

Note that, the postprocessing proposed in this chapter is applicable only to common-POI
alarms. Unlike common-POI alarms, processing the unique alarms by existing postprocessing
techniques does not incur redundancy. Therefore, we exclude them from our discussion.

Our evaluations performed using alarms generated by TCS ECA [197] indicated the follow-
ing.

• The proposed method to group and inspect common-POI alarms reduces manual inspec-
tion effort by 60%. The reduction is considering inspection of common-POI alarms only
(unique alarms were not considered in this evaluation).

• The proposed reuse of AFPE results across partitions reduces the total AFPE time by up
to 56%, with median reduction of 12.15%. The total AFPE time included time required to
process all the alarms using AFPE techniques: common-POI as well as unique alarms.

Following are the key contributions of our work presented in this chapter.

1. A grouping-based method to reduce the redundancy involved in manual inspection of
common-POI alarms.

2. A technique to reduce the redundancy in AFPE when applied to common-POI alarms.

Chapter Outline Section 5.3 describes the proposed technique to reduce the redundancy in
manual inspection of common-POI alarms. Section 5.4 presents the proposed technique to reduce
the redundancy in AFPE applied to common-POI alarms. Section 5.5 describes our empirical
evaluation. Section 5.6 presents related work, and Section 5.7 concludes.
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5.3 Manual Inspection of Common-POI Alarms
This section describes our proposed grouping of common-POI alarms (Section 5.3.2), and an
inspection method to reduce the redundancy in their manual inspection (Section 5.3.3). We
begin by defining the terms used to describe the grouping and inspection method.

5.3.1 Definitions
Definition 5.3.1 (Reversed Call Chains of an Alarm). For an alarm 〈φ, p〉 with f as its immediate
enclosing function, we call a list of functions a reversed call chain of the alarm, if

1. f is the first function in the list;

2. each function in the list is transitively called from p, and does not belong to a recursive
chain, i.e., it does not call itself directly or indirectly; and

3. except f, every other function in the list is an immediate caller of its previous function in
the list. �

For example, in Figure 5.1, the possible reversed call chains of 〈D34, p1〉 and 〈A30, p1〉 are
bar, bar ← foo, and bar ← foo ← p1. We use arrow in the lists to denote calls relationship:
the function on the right of the arrow calls the function on the left. On similar lines, the possible
reversed call chains of 〈D34, p2〉 and 〈A30, p2〉 are bar, bar← foo, and bar← foo← p2.

Definition 5.3.2 (Top of a Reversed Call Chain). We call the function at the end of a reversed
call chain top of the chain. �

For example, f1 is the top of the following chains: f1, f2← f1, and f3← f2← f1.

Definition 5.3.3 (Overlapped Reversed Call Chains of Common-POI Alarms). We call a reversed
call chain that is common to a group of common-POI alarms an overlapped reversed call chain
(ORCC) of those common-POI alarms. In other words, for a set of common-POI alarms A, we
say that a reversed call chain is an ORCC of A if the call chain is a reversed call chain of every
alarm in A. �

For example, in Figure 5.1, bar and bar← foo are ORCCs of common-POI alarms 〈D34, p1〉
and 〈D34, p2〉.

Consider the examples of common-POI alarms in Figure 5.2, shown using circles. The rect-
angles denote functions; p1, p2, p3, and p4 denote the partitions3 in which the alarms are gen-
erated. The ORCCs of common-POI alarms 〈a1, p1〉 and 〈a1, p2〉 (also 〈a2, p1〉 and 〈a2, p2〉),
shown in Figure 5.2(a), are f2 and f2← f1. The ORCCs of the common-POI alarms 〈a3, p1〉 and
〈a3, p2〉, shown in Figure 5.2(b), are f3, f3 ← f1, and f3 ← f2. The ORCCs of common-POI
alarms shown in Figure 5.2(c) are f2 and f2 ← f1. There is only one ORCC, f2, for the four
common-POI alarms shown in Figure 5.2(d).

Definition 5.3.4 (Strict-ORCCs of Common-POI Alarms). Let A be a group of common-POI
alarms, and P be the set of partitions in which the alarms are generated. We call an ORCC of A
strict-ORCC if

1. every partition (i.e., function) in P transitively calls the top of the ORCC;

3Recall that a partition is denoted by the top most function in that partition (Section 5.1).
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Figure 5.2: Examples of common-POI alarms, shown using circles. The rectangles denote func-
tions; p1, p2, p3, and p4 denote the partitions in which the alarms are generated. The solid
arrows denote calls relationship between two functions, while the dotted arrows denote alarms
generated in the functions.

2. there exists an immediate caller fc of the top of the ORCC such that fc is not transitively
called by at least one function in P ; and

3. for each function f in the ORCC, when f is not the top of the ORCC, every immediate
caller of f is transitively called by all the functions in P . �

For example, following are the strict-ORCCs of alarms shown in Figure 5.2.

• The common-POI alarms 〈a1, p1〉 and 〈a1, p2〉 in (a) have only one strict-ORCC: f2← f1.

• f2 is the only strict-ORCC of the common-POI alarms shown in (c) and (d).

Note that, for a given set of common-POI alarms, there can exist multiple strict-ORCCS. For
example, the common-POI alarms shown in Figure 5.2(b) have two strict-ORCCs: f3← f1, and
f3← f2.

5.3.1.1 Properties of Strict-ORCCs of Common-POI alarms

Let Φ be a group of common-POI alarms generated in partitions P , and the POI of the alarms
is in function f0. Recall that a partition is denoted using the function that is entry to the code
represented by that partition (Section 5.1). Therefore, P is a set of at least two functions. Let Os

be the set of strict-ORCCs of Φ, and T be the set of the tops of each chain in Os. We make the
following observation for f0 and the functions in T .

Theorem 5.3.1. Every direct or indirect call to f0 from every partition in P invokes exactly one
function in T .

Proof. We start by observing that no function in T calls (directly or indirectly) another function
in T . This follows from the fact that, an immediate caller of a top function in T is not transitively
called by at least one function in P (point 2 of definition 5.3.4), i.e., no transitive caller of the top
function can be a top of any strict-ORCC inOs. Therefore, to prove the theorem, it is sufficient to
prove that every direct or indirect call from every partition in P to f0 includes invoking a function
in T . We prove this by proving it separately for direct and indirect calls from any partition p ∈ P
to f0.
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When the call from p to f0 is a direct call, by definition of the strict-ORCCs, f0 is the only
strict-ORCC for the common-POI alarms Φ, and T = {f0}. Therefore, a direct call to f0 invokes
the function in T .

Let f0 ← ... ← fn ← p, where n ≥ 1, be a reversed indirect call from p to f0. A prefix
of this reversed call chain will always overlap with at least one of the reversed call chains for all
other common-POI alarms generated for the same POI but in other partitions, i.e., the prefix is
an ORCC of Φ. We denote this prefix using prefix1 = f0 ← ... ← fk, where 0 ≤ k ≤ n. If
prefix1 is a strict-ORCC of Φ, its top belongs to T , and therefore the indirect call from p to f0

includes invoking a function in T . If prefix1 is not a strict-ORCC of Φ, there will exist a prefix
prefix2 of prefix1 such that prefix2 is a strict-ORCC of Φ: f0 is the smallest possible prefix2 that
definitely exists if any other longer prefix does not exist as a strict-ORCC. Therefore, the top of
prefix2 will be in T . It indicates that the indirect call from p to f0 invokes a function in T .

Theorem 5.3.2. If an alarm inA gets identified as a false positive in the context of every function
in T , all the alarms in A are guaranteed to be false positives.

Proof. We first prove that when a common-POI alarm φ ∈ Φ generated in a partition p ∈ P is
a false positive in the context of every function in T , φ is also a false positive in the context of
p. Then we prove that the same is true for all the other common-POI alarms in Φ. By Theorem
5.3.1, every call from the partition p ∈ P to f0 includes invoking one of the functions in T .
Consequently, all possible calls from each partition p ∈ P to f0 pass through functions in T .
Therefore, when φ is a false positive in the context of each of the functions in T , φ is also a
false positive in the context of p: every function in T is called directly or indirectly by p. The
functions in T are computed based on the partitions in which the common-POI alarms Φ are
generated, and the functions are common to the group of common-POI alarms. Hence, when a
common-POI alarm in Φ is a false positive in the context of every function in T , all the other
common-POI alarms in Φ are also false positives.

5.3.2 Grouping of Common-POI Alarms
Recall that manual inspection of common-POI alarms suffers from redundancy, due to inspecting
the same code repetitively (Section 5.2.1). To eliminate this redundancy, we group common-POI
alarms together. For each group formed, we compute and report the top of each of the strict-
ORCCs of the grouped alarms. We call the tops computed for each group tops of the group. The
reporting of tops for each group is based on the observation described above (Section 5.3.1.1): if
a grouped alarm gets adjudged as a false positive in the context of all those top functions, all the
alarms in its group are also false positives and they are eliminated together.

Table 5.1 presents grouping of common-POI alarms in Figure 5.2, and proposed reporting
of the groups. The table presents the groups (with unique IDs assigned to them), common-POI
alarms in each group and the partitions in which they are generated, and tops of each group. For
each reported top of a strict-ORCC, we also report the length of the strict-ORCC. The reported
length indicates the distance of the top function, in terms of the number of functions, from the
immediately enclosing function of the grouped alarms. The enclosing function is assumed to be
at a distance of one.

We expect that, common-POI alarms in a group are more likely to be false positives in the
context of tops of longer strict-ORCCs compared to tops of the shorter ones, because longer
strict-ORCCs cover more code context. Therefore, we further create (sub)-groups of the common-
POI alarms in each group, so that the common-POI alarms in the sub-groups can have longer
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Table 5.1: Reporting of groups of common-POI alarms shown in Figure 5.2
.

Figure
Group

ID
Sub-group

ID
Common-POI

alarm
Partition

Tops of the
sub-groups

(length)

Tops of the group
(length)

Figure 5.2(a)
1 -

〈a1, p1〉 p1
- f1(2)

〈a1, p2〉 p2

2 -
〈a2, p1〉 p1

- f1(2)
〈a2, p2〉 p2

Figure 5.2(b) 3 -
〈a3, p1〉 p1

- f1(2), f2(2)
〈a3, p2〉 p2

Figure 5.2(c) 4 -
〈a4, p1〉 p1

- f1(2)
〈a4, p2〉 p2

Figure 5.2(d) 5
1

〈a5, p3〉 p3
f2(1)

f2(1)
〈a5, p4〉 p4

2
〈a5, p1〉 p1

f1(2)
〈a5, p2〉 p2

strict-ORCCs compared to the strict-ORCCs of alarms in the main group. We perform sub-
grouping only if (1) two or more sub-groups can be formed, each having least two alarms; and (2)
common-POI alarms in at least one sub-group have longer strict-ORCCs than the strict-ORCCs
of all the common-POI alarms in the group. In the reporting of alarms, for each sub-group, we
also report the top and length of every strict-ORCCs computed for the alarms in the sub-group.
Table 5.1 also presents sub-groups formed for alarms in Figure 5.2(d). The alarms 〈a5, p1〉 and
〈a5, p2〉 are sub-grouped together, because the strict-ORCC computed for them is longer than
the strict-ORCC computed for the grouped four common-POI alarms.

Note that, when a caller of the enclosing function of an alarm belongs to a recursive chain, we
do not compute reversed call chains (Definition 5.3.1). Hence, strict-ORCCs are not computed
for a group of common-POI alarms if their immediate enclosing function is called from a function
in a recursive chain. In such cases, as a limitation of our grouping method, common-POI alarms
are not grouped together: we report them similar to unique alarms (Section 5.1).

5.3.3 Manual Inspection of Grouped Alarms
We propose manual inspection of the grouped common-POI alarms based on the tops computed
for the groups. The inspection of grouped common-POI alarms is partition-wise, and includes
the following:

a) During inspection of alarms generated for partition p, common-POI alarms generated in
that partition are inspected along with the unique alarms generated for it. During the
inspection, if a common-POI alarm generated for the current partition is identified as a
false positive in the context of each of the tops reported for the alarm’s group, all the
alarms in the same group are marked as false positives and eliminated together.

b) if it is not the case in (a), and if the alarm is identified as a false positive in the context of
tops of its sub-group, all the alarms in its sub-group are eliminated together.
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5.4 Efficient Elimination of False Positives
This section first describes model checking-based techniques for automated false positives elim-
ination (AFPE) and the problem of poor efficiency of those techniques. It then describes our
approach to improve efficiency of the techniques by reducing redundancy in the elimination.

5.4.1 AFPE Techniques: Background
Recall that AFPE techniques eliminate false positives from alarms using more precise techniques
like model checking, symbolic execution, and deductive verification (Section 2.4.4). The tech-
niques that use model checking generate an assertion corresponding to each alarm such that the
alarm is a false positive when the assertion holds, e.g., corresponding to alarm 〈D34, p2〉 shown
in Figure 5.1, an assertion having condition z 6= 0 is created. Then they verify the generated
assertion using a model checker [35, 47, 174, 205, 220]. When the assertion is found to hold,
the corresponding alarm is identified as a false positive and is eliminated. However, due to the
state space problem, model checking-based verification is known to suffer from non-scalability
(inability to analyze large programs) and poor performance [34, 153, 174].

To scale model-checking based AFPE on large systems, Post et al. [174] have proposed a
context expansion approach. Verification of an assertion is started from the function that includes
the assertion (the lowest context). Then the verification context (function in which the assertion
is verified) is expanded to its callers until the assertion is proven to hold, a verification call times-
out or runs out-of-memory, or the last verified context is the entry-function of the partition.
Verification of assertion(s) in the context of a function is performed under the assumption that all
values are possible for variables that are input to the function and the functions called by it. As a
result, when an assertion is found to hold in some function, its corresponding alarm is guaranteed
to be false positive. The context expansion approach has been adopted in several works and has
helped to use the model checker in a more scalable way [34, 152, 153].

We use mcall(φ, f) to denote a call to model checker (model checking call) which verifies
the assertion generated corresponding to an alarm φ, and in the context of a given function f .
Since the verification context in model checking calls is specified as a function, we use the terms
context and function interchangeably.

Poor Efficiency of AFPE Techniques Although the context expansion adopted by AFPE tech-
niques has helped them to use a model checker in a more scalable way, the approach considerably
increases the number of model checking calls, and hence, further degrades efficiency of the tech-
niques. For example, consider alarm 〈D34, p1〉 shown in Figure 5.1, i.e., D34 generated in the
partition p1. Applying the context expansion-based AFPE technique for this alarm results in
two model checking calls: mcall(〈D34, p1〉, bar) and mcall(〈D34, p1〉, foo). The alarm is identi-
fied as a false positive and eliminated based on the second model checking call. On similar lines,
applying the technique for 〈A30, p1〉 results in three model checking calls: mcall(〈A30, p1〉, bar),
mcall(〈A30, p1〉, foo), and mcall(〈A30, p1〉, p1). Note that the two alarms 〈D34, p1〉 and 〈A30, p1〉,
generated in the same partition p1, are processed separately. The separate processing is intended
to reduce the state space, and thus to improve scalability of model checking. These examples
indicate that, multiple model checking calls are performed for each alarm, and therefore pro-
cessing the tool-generated alarms using the AFPE techniques results in a very large number of
model checking calls.

Grouping of assertions [34, 152] has been proposed to create groups of related assertions,
and verify assertions in each group together. However, the number of generated groups of re-
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lated assertions is still large, and the context expansion approach gets applied to each group. For
example, the grouping techniques fail to group together and verify assertions generated for the
alarms 〈D34, p1〉 and 〈A30, p1〉 shown in Figure 5.1. In addition to the context expansion ap-
proach, AFPE techniques [34, 45, 154] use program slicing to prune the code before each model
checking call, which increases the time taken by AFPE. Evaluations of the AFPE techniques
[34, 45, 152, 153] that are based on the context expansion approach, program slicing, and group-
ing of related assertions, indicate that processing a group of related assertions, on an average,
involves making five model checking calls and takes around three to four minutes.

As a result of the large number of model checking calls made during AFPE and each call
taking considerable amount of time, applying AFPE to alarms becomes time-consuming and
ultimately renders AFPE unsuitable for postprocessing of alarms generated on large systems.
For example, processing 200 groups of related alarms would require more than 10 hours.

5.4.2 Redundancy in AFPE Applied to Common-POI Alarms
We observe that applying context expansion-based AFPE technique to common-POI alarms res-
ults in repeated model checking calls. For example, applying the techniques to 〈D34, p1〉 shown
in Figure 5.1, results in calls mcall(〈D34, p1〉, bar) and mcall(〈D34, p1〉, foo). Applying the tech-
niques to 〈D34, p2〉 results in calls mcall(〈D34, p2〉, bar) and mcall(〈D34, p2〉, foo). Note that,
the two model checking calls made for these two common-POI alarms, 〈D34, p1〉 and 〈D34, p2〉,
are the same and their results will also be the same. On similar lines, among the three model
checking calls made for 〈A30, p1〉 and 〈A30, p2〉, the two calls made in the contexts of bar and
foo are also the same. This indicates applying AFPE techniques to common-POI alarms incurs
redundancy. Observe that, this redundancy is similar to the redundancy in manual inspection of
common-POI alarms (Section 5.2.1).

In Table 5.2, we illustrate this redundancy problem by showing the model checking calls
made for each of the common-POI alarms shown in Figure 5.2. We denote the model checking
calls by using only the verification contexts (functions) in those calls. The calls are shown as-
suming that the assertion corresponding to each common-POI alarm does not hold in any of the
functions, including the function that denotes the partition of the alarm. We also assume that the
context expansion is performed in depth-first manner. The calls shown in bold are repeated calls.
The repeated calls are identified assuming that the shown alarms are processed in the order of
the rows in the table.

5.4.3 Our Solution
To eliminate redundancy in processing common-POI alarms using AFPE techniques, we imple-
ment a reuse-based technique similar to memoization [2] and tabling [177, 196]. That is, before
making a model checking call, we check whether the same call has been already performed for
a different alarm generated for the same POI but in another partition. If the call has been already
performed, we reuse result of the earlier call, otherwise the call is made. This way reusing results
of model checking calls across partitions for common-POI alarms allows to reduce the number
of model checking calls and thus improve efficiency.

For example, applying this reuse-based approach to alarms shown in Figure 5.2 allows to
skip the repeated model checking calls in Table 5.2 (shown in bold) .
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Table 5.2: Model checking calls that will be made during AFPE applied to common-POI alarms
shown in Figure 5.2. The calls are shown using only the verification contexts (functions) in them.
The contexts shown in bold denote the repeated calls.

Figure
Common-POI

alarm
Partition Model checking calls

Total
calls

Repeated calls
across partitions

Figure 5.2(a)

〈a1, p1〉 p1 f2, f1, p1

12 4
〈a1, p2〉 p2 f2, f1, p2
〈a2, p1〉 p1 f2, f1, p1
〈a2, p2〉 p2 f2, f1, p2

Figure 5.2(b)
〈a3, p1〉 p1 f3, f1, p1

6 2
〈a3, p2〉 p2 f3, f1, p2

Figure 5.2(c)
〈a4, p1〉 p1 f2, f1, p1

6 2
〈a4, p2〉 p2 f2, f1, p2

Figure 5.2(d)

〈a5, p1〉 p1 f2, f1, p1

10 4
〈a5, p2〉 p2 f2, f1, p2
〈a5, p3〉 p3 f2, p3
〈a5, p4〉 p4 f2, p4

5.5 Experimental Evaluation
In this section we evaluate the grouping-based method to reduce redundancy in manual inspec-
tion of alarms, and the reuse-based technique to eliminate the redundancy in AFPE applied to
common-POI alarms.

5.5.1 Evaluation of the Grouping-based Inspection Method
In the evaluation, we selected the following partitioned industry applications.

1. App 1: An infotainment system having 14 million lines of code and 31288 functions. The
system was partitioned into 98 partitions, which run in parallel. These partitions were
manually identified by designers and maintainers of the system. The size of the partitions
varied from 4 to 700 KLOC. Among the total 31288 functions, 9327 were common to two
or more partitions.

2. App 2: An embedded system, having 10 KLOC, which was partitioned into 29 partitions.
These partitions were identified automatically (all uncalled functions were treated as parti-
tions). This system spanned over 83 functions of which 14 were common to two or more
partitions.

We analyzed the partitions of the two applications4, using TCS ECA [197], for commonly
checked properties zero division (DZ), array index out of bound (AIOB), illegal dereference
of a pointer (IDP), and overFlow-underFlow (OFUF). We performed the proposed grouping of
common-POI alarms and computed tops for the groups. Table 5.3 presents the results of the

4This evaluation was performed before the repositioning techniques are evaluated (Chapters 3 and 4). As these two
applications were no longer accessible, they were not included in the evaluations of the repositioning techniques.
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Table 5.3: Details of groups of common-POI alarms and their tops.

Appli-
cation

Property
Total

Alarms

Grouped
Common-

POI
alarms

Total
Groups

Groups
with 5+
alarms

Groups
with

multiple
tops

Groups
having
sub-

groups

Mean length
of strict-ORCCs
of (sub)-groups

Time Taken
(seconds)

Groups
Sub-
groups

Group-
ing

Sub-
group-
ing

App 1

DZ 825 494 117 53 2 53 2.23 3.11 1 2
AIOB 12946 5765 1199 229 42 369 2.61 3.43 22 75
IDP 99762 52412 8630 2234 338 3473 2.48 2.84 67 620
OFUF 100066 38897 7515 1989 661 2773 2.78 3.11 41 324

App2

DZ 5 4 2 0 0 0 1.5 0 0.1 0
AIOB 72 0 0 0 0 0 0 0 0.5 0
IDP 559 173 48 11 11 25 1.25 1.74 1 1
OFUF 321 53 15 3 3 10 1 1.6 1 1

Table 5.4: Results of manual inspection of the selected groups of common-POI alarms.

Appli-
cation

Property
Total

groups
inspected

(Sub)-groups and alarms eliminated together
by inspecting a single alarm from the (sub)-groups

(Section 5.3.3)
Number of

groups
Alarms in
the groups

Number of
sub-groups

Alarms in
the sub-groups

App 1
AIOB 80 65 221 4 13
OFUF 60 40 224 3 6

App 2
DZ 2 1 2 0 0
IDP 23 4 9 3 7
OFUF 15 9 31 2 4

analysis by TCS ECA and the grouping of common-POI alarms. The results indicate that around
45% of the alarms generated on those partitions are common-POI alarms. Since the groups of
common-POI alarms are formed per POI, the number of groups is equal to the number of POIs
for which the common-POI alarms are generated. Therefore, the number of POIs for which these
common-POI alarms are generated is 18% of the number of common-POI alarms. Around 25%
of the total groups formed include five or more alarms.

In order to evaluate the reduction in effort required to inspect common-POI alarms based on
the proposed method, we randomly selected 180 groups of common-POI alarms. The selected
groups had in total 640 alarms. We manually inspected these alarms using the method proposed
to inspect grouped common-POI alarms. We measured the number of groups (resp. sub-groups)
in which the grouped alarms were identified and eliminated as false positives by inspecting a
single alarm from each of those groups (resp. sub-groups) (Section 5.3.3). Table 5.4 presents
results of this activity. The results indicate the following:

1. Inspection of 131 alarms collectively lead to elimination of 517 alarms.
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2. Around 66% (119 out of 180) groups got eliminated just by inspecting a single alarm from
each group.

3. 6% of the eliminated alarms were eliminated based on the tops of their sub-groups. This
indicates that the sub-grouping of alarms is useful to reduce redundancy in manual inspec-
tion when the high-level grouping fails to do so.

To evaluate reduction in manual inspection effort, that can be obtained by the proposed
method to group and inspect common-POI alarms, the author manually inspected 640 alarms
from the 180 groups above in two different settings: inspection of the grouped alarms using the
proposed method, and inspection of ungrouped common-POI alarms. In this evaluation, since the
same set of alarms are to be inspected in two different settings, bias towards the second setting
gets introduced due to the learning effect from the first setting. To avoid bias getting introduced
to the proposed method, inspection of alarms using the proposed method was performed first:
reduction in inspection effort observed through this ordering of the settings will be smaller than
the reduction observed through reversed order of the settings. In both settings, the alarms were
inspected partition-wise, and the measured time is clock time. This experiment indicated that
the proposed method saves around 60% of the time required to manually inspect common-POI
alarms. The reduction in the manual inspection time is achieved at the expense of the increase
in the computation time needed to perform analysis and create sub-groups (column Time Taken
in Table 5.3).

5.5.2 Evaluation of the Reuse-based AFPE Efficiency Improvement
Implementation To evaluate the reuse-based technique proposed to improve efficiency of
AFPE, we implemented a series of state-of-the-art techniques that have been proposed for AFPE.
We first performed grouping of related assertions [34] to reduce the overall number of model
checking calls by processing related assertions together. For scalability of model checking, the
code is pruned for assertions in each group using backward slicing [211] (called partition-level
slicing). The code slices generated for each group are then processed using techniques that over-
approximate loops whose bound cannot be determined statically [35, 46]. The assertions in the
over-approximated code are verified using the context expansion approach [153, 174]. We used
CBMC [28] as the model checker to verify the assertions. Before making a model checking
call in the context of a function, the code is pruned (sliced) considering that function as the
entry-point [45] (called function-level slicing). When a model checking call is skipped, the cor-
responding function-level slicing also can be skipped. Henceforth, we use model checking call
to mean the both: call first to a slicer for function-level slicing and then to a model checker.

Selection of applications and alarms Table 5.5 presents five partitioned-code applications
that we selected. The selection of applications was based on whether (a) alarms generated on
them were common-POI alarms, and (b) we could run the implemented AFPE-techniques on
them. The first two applications are selected from the benchmark used to evaluate our technique
proposed to postprocess delta alarms in Chapter 6 (Section 6.8.1.1). The other three applications
are selected from the benchmarks used to evaluate our proposed alarms repositioning techniques
in Chapter 3 (Section 3.6.1.2) and Chapter 4 (Section 4.6.1).

We analyzed the partitions of the selected applications using TCS ECA [197] for three veri-
fication properties: array index out of bounds (AIOB), division by zero (DZ), and overflow under-
flow (OFUF). Table 5.5 presents the number of alarms generated on those applications (column
Total Alarms).



5.5. Experimental Evaluation 113

Table 5.5: Experimental results for evaluation of the reuse-based technique to improve efficiency
of AFPE techniques applied to alarms generated on partitioned code.

Appli-
cation

Parti-
tions

Property
Total

Alarms
Groups

of related
assertions

False
positives

elimi-
nated

Total time for AFPE
(in minutes )

Total model
checking calls

Without
reuse

With
Reuse

%
redu-
ction

in time

Without
Reuse

With
Reuse

%
redu-
ction

in calls

smp_utils 29
AIOB 178 43 20 866.4 807.3 6.8 88 9 10.2
OFUF 1534 277 198 1000.2 995.2 0.5 210 186 11.4

dict_gcide 8
AIOB 106 26 1 22.0 9.71 55.9 47 21 55.3
DZ 128 100 8 23.2 13.75 40.6 94 39 58.5
OFUF 652 331 43 40.3 32.4 19.7 139 92 33.8

uucp (5) 5
AIOB 22 9 0 66.4 45.3 31.7 6 4 33.3
OFUF 343 136 0 213.65 170.9 20.0 23 18 21.7

ffmpeg
(93)

93
AIOB 1775 507 340 904.2 805.0 11.0 589 549 6.8
DZ 582 134 5 211.9 176.3 16.8 192 154 19.8
OFUF 12375 1979 1314 4217.4 3909.7 7.3 1849 1721 6.9

Industry
app (3)

3
AIOB 145 38 52 236.8 232.6 1.8 120 109 9.2
DZ 9 6 0 69.1 69.1 0 18 18 0
OFUF 300 89 75 452.8 442.1 2.4 208 175 15.9

Experimental Results Table 5.5 also presents the results of postprocessing the selected alarms
using the implemented series of techniques. It shows the number of groups of related assertions
formed, and the number of false positives eliminated using the implemented techniques. For
each model checking call the time out threshold was set to 10 minutes. In the earlier studies
[34, 45, 153] the time out threshold varies from two minutes to eight minutes. To increase the
likelihood of alarms being verified or refuted, we preferred to increase the threshold compared
to the earlier studies.

To evaluate our proposed reuse-based technique, we processed the alarms in two settings:
with and without reusing AFPE results of common-POI alarms across partitions. The results
indicate that, the proposed reuse of AFPE results across partitions reduces the number of model
checking calls by up to 58.5%, with median reduction of 19.8%. The reduction in model checking
calls reduced the total AFPE time by up to 56%, with median reduction of 12.15%. Note that,
higher reduction in the number of model checking calls does not imply a similar reduction in the
time: in several instances, the reduction in time is much smaller than the reduction in the number
of calls. This occurs due to the following two reasons.

1. In general, the model checking calls which are made for higher contexts result in time-out,
and those contexts are not common to multiple clusters and therefore their results are not
reused. A call that results in time-out takes much more time (10 minutes), whereas the
other calls generally take less than a minute.

2. The total AFPE time includes the time required to process all the alarms using AFPE
techniques: common-POI as well as unique alarms. There is no reuse of results for unique
alarms. Moreover, the total AFPE time also includes the time to generate partition-level
slices and to over-approximate the loops. Our proposed reuse-based technique does not
reduce the time taken by these two techniques.
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Due to the above two reasons, the reduction in AFPE time seems to be lower than the reduc-
tion in effort to manually inspect common-POI alarms, where the effort reduction is measured
for common-POI alarms only.

Like any other empirical study, the evaluations of the proposed alarms inspection method
(Section 5.5.1) and reuse-based technique (Section 5.5.2) are subject to threats to validity. Since
these evaluations are on similar lines to evaluations in Chapters 3, 4 and 6, we discuss the threats
to validity of all these studies in the conclusions chapter (Section 7.3).

5.6 Related Work
In this section, we first compare our proposed grouping-based method to inspect common-POI
alarms, and then the reuse-based technique to reduce the time taken by AFPE, with the techniques
that are related to them.

Grouping-based Inspection Method Among the six approaches proposed for postprocessing
of alarms, clustering and simplification of manual inspection are relevant to our proposed grouping-
based inspection of common-POI alarms. Sound clustering techniques group similar or related
alarms together and identify dominant alarms for each group, so that only a few alarms from
each group get inspected. Our method is on similar lines, because inspecting only one alarm
in most (66%) of the groups is sufficient. However, these existing clustering techniques fail to
group similar or common-POI alarms that are generated for different partitions. In our method,
we group these common-POI alarms together. Therefore, the clustering techniques and our pro-
posed grouping method are orthogonal, and can be used together to process alarms generated on
partitioned code. The existing techniques proposed to simplify manual inspection of alarms em-
ploy different methods. However, none of them takes into account that the common-POI alarms
are generated for the same POI. We find that, the existing techniques can be combined with our
proposed inspection method to obtain better results.

Reuse-based AFPE Technique Existing techniques that are proposed to improve efficiency
of model checking-based AFPE are relevant to our reuse-based technique proposed to improve
AFPE efficiency. Chimdyalwar and Darke [34] used data and control dependencies to form
groups of related assertions (alarms). As they verify assertions in each group together, instead of
verifying each assertion separately, the overall number of model checking calls are reduced. In
our prior work [152, 153], we proposed techniques to predict result of a given model checking
call, and used the predicted results to skip a subset of model checking calls. Wang et al. [209]
used program slicing to improve efficiency of model checking-based false positives elimination.
Applying these AFPE techniques to common-POI alarms can help to improve efficiency, however
they may still result in repetitive model checking calls as they do not take into account that they
are generated for the same program points. Our proposed reuse-based technique reduces the
number of model checking calls by reusing results of the repeated calls across multiple partitions.
This indicates that existing techniques and our technique, being orthogonal to each other, can be
used together.



5.7. Conclusion 115

5.7 Conclusion
In this chapter, we have addressed the problem of (1) repetitively inspecting the same code dur-
ing manual inspection of common-POI alarms, and (2) making the same model checking calls
multiple times during AFPE applied to common-POI alarms. We considered the special category
of common-POI alarms for their postprocessing, because around half of the alarms generated on
partitioned-code are common-POI alarms, and applying the existing postprocessing techniques
to them incurs redundancy. We addressed the redundancy problem by taking into account that
the common-POI alarms are generated for the same POI but for multiple partitions.

To reduce the redundancy in inspection of common-POI alarms, incurred due to repetitive
inspection of the same code, we proposed their grouping. For each group, we reported tops of
each of the strict-ORCCs computed for common-POI alarms in the group. Based on the tops of
the group, we proposed a method to inspect the grouped alarms. Our evaluation of the method
indicates that

Grouping of common-POI alarms and inspecting them based on the tops computed for
each group allows to eliminate alarms in 66% of the groups just by inspecting only one
alarm from each group. Skipping inspection of the other alarms from these groups reduces
60% of the effort required to manually inspect common-POI alarms.

To reduce the redundancy in applying AFPE to common-POI alarms, incurred due to repet-
itive model checking calls made for common-POI alarms, we reused results of model checking
calls across the partitions. The reuse of results allows to reduce the number of model check-
ing calls, and thereby to improve AFPE efficiency. Our evaluation of the reuse-based technique
indicates that,

Reusing results of model checking calls across partitions for common-POI alarms allows
to reduce the number of model checking calls by up to 58.5%, with median reduction of
19.8%. Skipping those repetitive model checking calls reduces the total AFPE time by up
to 56%, with median reduction of 12.15%.

During evaluation of the reuse-based technique to improve AFPE efficiency, we observed that
the context expansion approach does not take the hierarchy and structure of calling functions into
account. Based on the hierarchy and structure of calling functions, we plan to reduce the number
of model checking calls made during the context expansion approach.

The proposed assertions grouping technique [34] groups related alarms that belong to the
same function. We observe that, during context expansion, model checking calls for related
alarms belonging to different functions can be combined when the calls are made for common
calling functions. Based on this observation, as future work, we plan to formulate and evaluate a
technique to reduce the overall number of model checking calls.





Chapter 6

Postprocessing of Delta Alarms

Static analysis tools help to detect common programming errors but generate a large number
of alarms indicating possible errors. Moreover, when applied to an evolving software system,
many alarms are repeated from a previous version to the next one. Version-aware static analysis
techniques (VSATs) are proposed to reduce the number of alarms by suppressing the repeated
alarms. The alarms reported by VSATs, i.e., the alarms remaining after the suppression, are
called delta alarms.

We observe that, postprocessing and reporting of delta alarms can be further improved by
taking into account code changes between the two versions. However, none of the existing
VSATs postprocess delta alarms based on code changes. Based on this observation, we use
code changes to (1) rank delta alarms, and (2) to improve efficiency of existing automated false
positive elimination (AFPE) techniques when they are applied to delta alarms.

We first classify delta alarms into six classes depending on the code changes generating them,
and then rank the alarms by assigning different priorities to these classes. The ranking of alarms
can help suppress alarms that are ranked lower when resources to inspect alarms are limited.
Next, we postprocess ranked delta alarms for AFPE. We use the classes and code changes to
determine situations where AFPE results from the previous version can be reused. The reuse
of AFPE results across the two versions helps to improve efficiency of AFPE applied to delta
alarms.

We performed an empirical evaluation using 9789 alarms generated on 59 versions of seven
open source C applications. The evaluation results indicate that the proposed classification and
ranking of delta alarms help to identify 61% of delta alarms as less likely to be errors than the
others. The reuse of AFPE results across the versions reduces the number of model checking
calls by median of 84.3%, which in turn reduces the AFPE time by median of 64.5%.
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6.1 Introduction
In this section, we first introduce version-aware static analysis techniques (VSATs) and the no-
tion of delta alarms generated by these VSATs. Next, we describe two problems associated
with postprocessing of delta alarms. Then, we provide overview of solutions that we propose to
address those problems.

6.1.1 Background
Static analysis tools help to automatically detect common programming errors like division by
zero and array index out of bounds [12, 14, 21, 206] as well as to certify absence of such errors
in safety-critical systems [24, 52, 112]. However, these tools are known to generate a large
number of false alarms, i.e., spurious warning messages notifying the tool-user about potential
errors [54, 92, 139, 181, 186]. Partitioning the alarms into true errors and false alarms (false
positives) requires manual inspection [54, 120, 182]. The large number of false positives and
effort required to manually analyze alarms have been identified as primary reasons for underuse
of static analysis tools in practice [20, 37, 92, 120].

Furthermore, when applying a static analysis tool to evolving systems, numerous alarms re-
ported by the tool for one version also get reported for the subsequent one. We call these alarms
repeated alarms. A few of the alarms postprocessing techniques propose to reduce the number
of repeated alarms by taking into account the code changes between the two versions (Sec-
tion 2.4.3.2). We call these postprocessing techniques version-aware static analysis techniques
(VSATs). Note that, VSATs are different from the history-aware alarms ranking techniques
(Section 2.4.2.2) which analyze the software change history to rank alarms. The ranking is
primarily based on identification of categories of alarms that are quickly or commonly fixed by
the programmers. In contrast, VSATs aim to identify alarms that repeat across two subsequent
versions and suppress them by taking into account the code changes between the two versions.

The alarms reported by VSATs, i.e., the alarms remaining after the suppression of repeated
alarms, are called delta alarms. That is, a delta alarm reported by a VSAT is either newly
generated alarm or a repeated alarm that is impacted by a code change between the two versions
(called impacted alarm). Reporting of the latter type of alarm is required, because the alarm may
be a new error due to a code change between the two versions.

Suppressing a repeated alarm based on the coding patterns [207] or syntactic location match-
ing [191] can be unreliable: an alarm that indicates an error can get suppressed. Hence, more ad-
vanced reliable VSATs [36, 117, 133] have been proposed. Section 6.3 discusses the approaches
used by these reliable VSATs for the safe suppression of alarms. Furthermore, it describes lim-
itations of the reliable VSATs. In this chapter, we limit the discussion scope only to delta alarms
reported by the reliable VSATs.

6.1.2 The Problem
Due to their limitations (discussed in Section 6.3), the reliable VSATs [36, 133] still report a
large number of delta alarms: evaluations of reliable VSATs indicate that around 40-80% of
the tool-generated alarms get reported as delta alarms. Therefore, delta alarms require further
postprocessing to reduce their number and to simplify their manual inspection. We find that, in
addition to computing delta alarms, the information about code changes can be used further to
improve postprocessing of the alarms. However, none of the VSATs further postprocesses delta
alarms based on code changes.



6.1. Introduction 119

Moreover, we find that, since different program statements affect alarms differently [116],
information about the changed program statements can be used to prioritize delta alarms so that
lower ranked alarms can be suppressed when resources available to manually inspect them are
limited. This observation led to the following research question.

RQ 6: How can we rank delta alarms based on types of the code changes generating
them such that the alarms ranked higher are more likely to be errors than the alarms ranked
lower?

Next we consider applying automated false positives elimination (AFPE) to automatically
reduce the number of delta alarms. As AFPE is known to perform poorly in terms of efficiency
(discussed earlier in Section 5.4.1), improving its efficiency is important [34, 152, 153]. We find
that, since impacted alarms are repeated across the two versions, the calls to a model checker
made during AFPE applied to the impacted alarms are also repeated when the code previously
verified by the model checker is not changed. Therefore, results of applying AFPE to alarms
generated on the previous version can be reused when AFPE is applied to impacted alarms gener-
ated on the subsequent version. However, to the best of our knowledge, no alarms postprocessing
technique reuses AFPE results across versions. This observation led to the following research
question.

RQ 7: How can we use code changes to improve efficiency of AFPE applied to delta
alarms?

6.1.3 Overview of Our Solution
To address the problems discussed above, we propose postprocessing of delta alarms based on
the corresponding code changes: the code changes due to which the delta alarms are generated.
The proposed postprocessing has the following novelties.

Addressing RQ 6: We first classify delta alarms into six classes depending on type of the cor-
responding code changes. We then rank the delta alarms by assigning different priorities
to these classes. The prioritization of the classes is based on our observation that the like-
lihood of a delta alarm being impacted by a code change generating it varies depending on
the type of the change (and thus the class of the delta alarm). This observation is based on
the finding by Kumar et al. [116] that many of the program statements appearing on the
backward slice generated for an alarm do not affect whether the alarm is a false positive.
Since the alarms in the lowest priority class(es) are most likely to be false impacted alarms,
they can be suppressed. The alarms suppression may result in unsoundness (suppressing a
genuine error), however it is unavoidable when the resources (time) available to manually
inspect all the alarms are not sufficient.

Addressing RQ 7: Next, we use the code changes and the alarm classes to improve efficiency
of AFPE applied to delta alarms. The efficiency improvement is obtained by reducing
the number of model checking calls made during AFPE. We reduce the number of model
checking calls by determining the instances where AFPE results from the previous version
can be reused. The reuse of results is for impacted alarms and determined based on whether
the code being verified by the model checking calls is changed between the two versions.
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We design our techniques, proposed for the above postprocessing, to accept the following
inputs: (1) delta alarms generated on the current version being analyzed using static analysis, (2)
results of static analysis and AFPE on the previous version, and (3) mapping of the source code of
the previous version to the current version (Section 6.4). This design allows postprocessing delta
alarms independently of the VSATs generating them and techniques used to identify changes
between the two versions.

We performed an empirical evaluation of the proposed technique using 9789 alarms gener-
ated by a commercial static analysis tool, TCS ECA [197], on 59 versions of seven open source
C applications. The evaluation results indicate that, the proposed classification and ranking of
delta alarms help to identify 61% of delta alarms as less likely to be errors than the others.

The reuse of AFPE results across the versions reduces the number of model checking calls
by median of 84.3%, which in turn reduces the analysis time by 64.5%.

The following are key contributions of this chapter.

1. A technique to classify delta alarms into six classes based on the code changes generating
them, and rank the delta alarms by prioritizing those classes.

2. A reuse-based technique to improve efficiency of AFPE applied to delta alarms.

3. An empirical evaluation of the techniques above using 9789 alarms generated on 59 ver-
sions of seven open source C applications.

Chapter Outline Section 6.2 presents the terms and notations that we use throughout this
chapter. Section 6.3 describes limitations of the reliable VSATs. Section 6.4 describes the pre-
requisites (inputs) for our technique. Section 6.5 describes our classification of delta alarms,
while Section 6.6 presents the proposed ranking. Section 6.7 describes the reuse-based technique
proposed to improve efficiency of AFPE. Section 6.8 discusses our empirical evaluation. Section
6.9 presents related work, and Section 6.10 concludes.

6.2 Background: Terms and Notations
We use the terms and notations described in Sections 3.2.1 and 4.2. Following we describe a few
additional terms and notations that we use in this chapter.

6.2.1 Data and Control Dependencies
Recall that data dependencies of a variable are the definitions on which the variable is data
dependent (Section 4.2.1). For a reaching definition dv of v (i.e., a data dependency of v), we use
assignExpr(dv) to denote the assignment expression at dv: the expression having an assignment
to v at dv . We say that data dependencies of an assignment expression e are same as union of
data dependencies of variables in RHS of e. For an expression other than assignment, its data
dependencies are defined as the union of data dependencies of variables in it.

Recall that control dependencies of a node n are the conditional edges on which n is control
dependent (Section 4.2.1). For a given control dependency u → v, we use label(u → v) to
denote its label, and use condExpr(u → v) to denote the conditional expression associated
with the branching node u. When a conditional edge u → v is from a switch statement to
one of its case statements, we assume that the label of that edge is same as the case label. We
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say that control dependencies of an expression e are same as control dependencies of the node
corresponding to e.

For a control dependency (conditional edge) e, data dependencies of e are same as data
dependencies of condExpr(e). Control dependencies of a data dependency dx : x = expr (resp.
a control dependency u→ v) are same as the control dependencies of node corresponding to dx
(resp. node u).

Let α be a variable/expression at a program point p, or a data/control dependency. We write
d

d−→ α (resp. e c−→ α) to denote d is a data dependency of α (resp. e is a control dependency
of α). A reaching definition (assignment expression) d is a transitive data dependency of α if
d1

d−→ d2
d−→ d3

d−→ ... d−→ dk, where d1 = d, dk = α, di
d−→ di+1, and k ≥ 2. We use

d
d+−→ α to denote that d is a transitive data dependency of α. Let D be the set of all possible

data dependencies (definitions of variables) in the program. We denote transitive closure of data
dependencies of α using dDep+(α), where dDep+(α) = {d | d ∈ D, d d+−→ α}.

On similar lines, a conditional edge e is a transitive control dependency of α (shown as
e

c+−→ α) if e1
c−→ e2

c−→ e3
c−→ ... c−→ ek, where e1 = e, ek = α, ei

c−→ ei+1, and k ≥ 2. We
write cdDep cd−→ α to denote cdDep is a data or control dependency of α. A dependency, i.e., a
reaching definition or a conditional edge, cdDep is a transitive data and control dependency of
α (shown as cdDep cd+−−→ α) if cd1

cd−→ cd2
cd−→ cd3

cd−→ ... cd−→ cdk, where cd1 = cdDep, cdk =

α, cdi
cd−→ cdi+1, and k ≥ 2.

Let C be the set of all possible control dependencies (conditional edges) in the program.
We denote transitive closure of data and control dependencies of α using cdDep+(α), where
cdDep+(α) = {d | d ∈ D, d cd+−−→ α} ∪ {e | e ∈ C, e cd+−−→ α}.

6.2.2 Program Slicing
For given a program and a set of variable(s) at a program point of interest, program slicing [211]
computes a program that contains only those statements that are likely to influence the values
of the variables at that program point [116]. The computed program is called a program slice.
Depending on the use of program slice, several backward slicing techniques have been proposed
[189, 199], such as backward slice [211], and thin slice [192]. Backward slice [211] consists
of program statements that correspond to both data and control dependencies, whereas thin slice
[192] consists of the statements that correspond only to data dependencies.

Kumar et al. [116] have recently proposed the notion of value slice, which is a pruned version
of the backward slice and an enriched version of thin slice. A value slice generated for an
expression e, in addition to the transitive data dependencies of e, also consists of the control
dependencies that influence the values of variables in e. We call the control dependencies on a
value slice value dependencies. In other words, a value slice is obtained by eliminating from
the backward slice the control dependencies and their transitive dependencies, that only decide
whether the program point of e is reachable. For example, consider the expression arr[x] at line
8 in V1 in Figure 6.1. Its control dependency n7 → n8 is not a value dependency, however the
same control dependency is a value dependency for the expression y present at line 11.

We use e v−→ α to denote that a conditional edge e is a value dependency of α. A conditional
edge e is a transitive value dependency of α (shown as e v+−→ α) if e1

v−→ e2
v−→ e3

v−→ ... v−→ ek,
where e1 = e, ek = α, ei

v−→ ei+1, and k ≥ 2. We use vdDep vd−→ α to denote vdDep is a data
or value dependency of α. A dependency vdDep is a transitive data and value dependency of α
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Version V1

1 int foo(){
2 int x = 0, y = 0, arr[10];
3
4 x = lib();
5
6
7 if(nondet()){
8 y = arr[x]; A′8
9 }

10
11 x = y;
12 }

Version V2

1 int foo(){
2 int x = 0, y = 0, arr[12];
3
4 x = lib();
5
6 x = x + 2;
7 if(nondet()){
8 y = arr[x]; A8

9 }
10
11 x = y;
12 }

Figure 6.1: Illustrating limitation of IA-VSAT: it reports A8 as a delta alarm while VMV sup-
presses the alarm.

if vd1
vd−→ vd2

vd−→ vd3
vd−→ ... vd−→ vdk, where vd1 = vdDep, vdk = α, vdi

vd−→ vdi+1, and
k ≥ 2. We write vdDep vd+−−→ α to denote that vdDep is a transitive data and value dependency
of α. We denote transitive closure of data and value dependencies of α using vdDep+(α), where
vdDep+(α) = {d | d ∈ D, d vd+−−→ α} ∪ {e | e ∈ C, e vd+−−→ α}.

The three slices—backward, value, and thin—generated for an expression are such that back-
ward slice subsumes1 value slice, and value slice subsumes thin slice: the size of value slice (resp.
thin slice), in terms of the nodes on that slice, is on average about 50% (resp. 25%) of the size
of backward slice [116, 192]. The techniques to generate these three slices create a program de-
pendence graph [64] to determine which dependencies are to be retained on the slice and which
ones to be removed. We say that a program slice created for e is same as the slice created together
for the variables in e.

6.2.3 Static Analysis Alarms
Recall that an expression that is checked by a static analysis tool is called a point of interest (POI)
(Section 1). For example, a POI for check related to DZ and AIOB respectively corresponds to a
denominator and access of an array with its index. We use poi(φ) to denote the POI of an alarm
φ, and φpl,V to denote an alarm reported for a POI of verification property p, present in line l of
version V . We say that a slice generated for an alarm φ is same as the slice generated for poi(φ).

We use cond(φ) to denote alarm condition of an alarm φ, i.e., the check performed by the
analysis tool for detecting an error. The alarm condition holds iff the corresponding alarm is a
false positive. For example, 0 ≤ x ≤ 11 is the alarm condition of A8 shown in Figure 6.1. Note
that the alarm condition of an alarm is a logical formula, independent of the program point of the
alarm. We say that alarms φ and φ′ of the same property are similar if cond(φ)⇔ cond(φ′).

We assume that a static analysis tool groups the generated alarms using state-of-the-art clus-
tering techniques [123, 156], and a VSAT computes delta alarms from dominant alarms resulting
after the clustering. As a result, no two delta alarms reported for a line are similar.

1Slice X subsumes slice Y iff every dependency in Y is also present in X.
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6.3 Background: VSATs and Their Limitations
In this section, we briefly describe the existing version-aware static analysis techniques (VSATs),
classify them into two classes, and present their limitations. Henceforth in this chapter, we use
V1 and V2 to denote two subsequent code versions.

6.3.1 VSATs and Their Classification
The approaches used by the existing VSATs [36, 117, 133, 191, 207] to suppress repeated alarms
vary greatly, and include such methods as syntactic location matching [191], coding patterns
[191], and impact analysis [36]. Based on whether the techniques can result in suppression of an
error (false negative), we classify them into the following two classes.

1. Unreliable VSATs: The techniques [191, 207] of this class can result in suppressing an
error, because they are based on syntactic location matching [191] and coding patterns
[207]. Therefore, we call these techniques unreliable VSATs: soundness guarantees cannot
be provided for the false alarms suppressed by them. As these techniques are unreliable,
we exclude them from subsequent discussion.

2. Reliable VSATs: The techniques [36, 117, 133] in this class perform safe suppression
of repeated alarms, i.e., they do not suppress a true error. Therefore, we call these tech-
niques reliable VSATs: they provide soundness guarantees for the suppressed false alarms.
The safe suppression of alarms is based on an assumption that the user has inspected all
alarms reported on the previous version, and has taken corrective actions for the alarms that
were identified as errors. The approaches used by these reliable techniques [36, 117, 133]
include impact analysis [36], carrying over semantic information from the previous ver-
sion [133], and differential assertion checking [117]. We exclude the differential assertion
checking-based VSAT [117] from our discussion in this chapter, because it checks two
versions of a program with respect to a set of assertions (alarms), i.e., it does not consider
newly generated alarms. Below we describe the approaches used by the other two VSATs.

(a) The VSAT proposed by Chimdyalwar and Kumar [36], performs an impact analysis
to identify code in V2 impacted by the code change between V1 and V2, and sup-
presses alarms that are generated on V2 and not impacted by the changes. We call
this VSAT impact analysis-based VSAT (IA-VSAT). IA-VSAT first creates program
dependence graphs for the repeated alarms on both the versions V1 and V2, and uses
the graphs to compute alarms that are impacted by the code changes between V1 and
V2.

(b) The VSAT proposed by Logozzo et al. [133], also called as verification modulo ver-
sions (VMV), first extracts semantic environment conditions—sufficient or necessary
conditions—from V1, and instruments the code in V2 to insert those conditions at the
corresponding locations. Later, the instrumented code is verified, where the condi-
tions suppress a subset of alarms generated on V2 by proving them as safe.

6.3.2 Limitations of Reliable VSATs
The above two VSATs have fundamentally different strengths and limitations. To illustrate this,
consider the C code shown in Figure 6.1, where the code changes between the versions V1 and V2

are highlighted. Analyzing each of the versions using a static analysis tool for AIOB generates
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Version V1

1 int foo(){
2 int a, b, t;
3 if (a <= 100)
4 a = 100 - a;
5 else
6 a = a - 100;
7
8 while (a >= 1){
9 a = a - 1;

10 b = b - 2;
11 }
12
13 return 1 / b; D′13
14 }

Version V2

1 int foo(){
2 int a, b, t = 0;
3 if (a <= 100)
4 a = 100 - a;
5 else
6 a = a - 100;
7 print(t);;
8 while (a >= 1){
9 a = a - 1;

10 b = b - 2;
11 }
12
13 return 1 / b; D13

14}

Figure 6.2: Illustrating limitation of VMV: it reports D13 as a delta alarm while IA-VSAT sup-
presses the alarm.

an alarm, respectively shown asA′8 andA8. Ideally, a VSAT should suppressA8 because ifA′8 is
a false positive, A8 is also a false positive. However, IA-VSAT [36] when applied on V2 reports
A8 as a delta alarm, because the changes at lines 3 and 7 are found to be impacting the alarm:
the data dependency of poi(A8) is changed. In contrast, VMV [133] suppresses the same alarm,
because it first extracts 0 ≤ x ≤ 9 as a sufficient condition at line 4, and accordingly instruments
the code in V2. Later, while analyzing the instrumented code, the same array access (arr[x]) at
line 8 is proved safe, i.e., no alarm is generated for the array access.

As another example, consider the two versions shown in Figure 6.2 (adapted from [96]).
Analyzing these versions using a static analysis tool for DZ property generates an alarm, re-
spectively shown as D′13 and D13. Ideally, a VSAT should suppress D13 as it is not impacted
by the changes. IA-VSAT suppresses D13. However, inferring a useful correctness condition—
sufficient or necessary condition—corresponding to D13 as required by VMV is challenging
[96]. When a useful correctness condition cannot be computed, VMV reports the alarm as a
delta alarm, i.e., in Figure 6.2 D13 is reported as a delta alarm.

Due to their different strengths and limitations and they being reliable, the above two VSATs
can be combined: an alarm is suppressed if any of them suppresses it. However, even their
combination can fail to suppress delta alarms in commonly occurring scenarios. Consider the
example shown in Figure 6.3. Analyzing the code in V1 and V2 using a static analysis tool for
AIOB and DZ properties generates four and six alarms respectively. These alarms are shown
using rectangles. None of these two reliable VSATs or their combination suppresses any of the
six alarms generated on V2. Therefore, all the alarms generated on V2 get reported as delta
alarms.

We use the example in Figure 6.3 as the running example for the rest of this chapter.
In addition to the limitation discussed above, the reliable VSATs report false delta alarms

when the code from the two subsequent versions cannot be mapped precisely due to code refact-
oring and movement (semantics preserving changes). Thus, the VSATs still report a large number
of delta alarms: evaluations of the reliable VSATs indicate that around 40-80% of the generated
alarms get reported as delta alarms. Hence, postprocessing of delta alarms is required [36, 133].
Furthermore, to benefit from multiple VSATs and the different techniques available to map the
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Version V1

1 int x, y, z, a[50];
2 int arr[10] = {...};
3
4 void foo(int p){
5 int m = 2, t;
6
7 y = lib2();
8 z = lib3();
9

10 if(nondet())
11 m = 4;
12 bar(m);
13
14
15 t = x / y; D′15
16 }
17
18 void bar(int i){
19 int t = 0, t1;
20
21 x = lib1();
22 t1 = arr[x]; A′22
23
24 if(z > 20)
25 t = arr[y]; A′25
26
27 a[i] = 5;
28
29 print(25 / t); D′29
30 }

Version V2

1 int x, y, z, a[50];
2 int arr[10] = {...};
3
4 void foo(int p){
5 int m = 2, t;
6
7 y = lib2();
8 z = lib4();
9

10 if(nondet())
11 m = z;
12 bar(m);
13 z = 1000 / p; D13 //POI-added
14
15 t = x / (y - 2); D15 //POI-changed
16 }
17
18 void bar(int i){
19 int t = 0, t1;
20
21 x = lib3();
22 t1 = arr[x]; A22 //Impacted
23
24 if(z > 20)
25 t = arr[y]; A25 //Impacted
26
27 a[i] = 5; A27 //Result-changed
28
29 print(25 / t); D29 //Impacted
30 }

Figure 6.3: Examples of delta alarms (generated on V2).

code in two versions [61, 134], the postprocessing of delta alarms ought to be independent of the
VSATs and code mapping techniques.

6.4 Pre-requisites (Inputs) for Our Technique
To postprocess delta alarms independently of VSATs and code mapping techniques, we designed
our technique to accept the following inputs: delta alarms, mapping of the code in V1 to V2 (called
code mapping), and static analysis results on V1. The input delta alarms can be generated by any
VSAT, reliable or unreliable. Below we describe the code mapping taken as input.

We assume that a mapping function MapV1,V2
: lines(V1)→ lines(V2)∪ {⊥} is given, which

maps source code lines in V1 to their corresponding lines in V2, and to ⊥ if the lines have been
deleted from V1. Moreover, no two lines in V1 map to the same line in V2. We use this map to
compute the following.

(i) A line l1 in V1 is deleted if MapV1,V2
(l1) = ⊥.

(ii) A line l2 is added in V2 if there does not exist l1 in V1 such that MapV1,V2
(l1) = l2.
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(iii) A line l1 in V1 (or l2 in V2) is changed if MapV1,V2
(l1) = l2 and the code on l1 and l2,

excluding the white spaces, is different.

(iv) A line l2 in V2 (or l2 in V2) is unchanged if MapV1,V2
(l1) = l2 and the code on l1 and l2,

excluding the white spaces, is same.

When MapV1,V2
(l1) = l2 and l2 6= ⊥, we say that l1 and l2 are corresponding lines. For

a changed line l1 in V1 and its corresponding (changed) line l2 in V2, similar to mapping of
the lines in V1 to V2, we map every token (such as identifier, operator, grouping symbol, or
data type) in line l1 to its corresponding token in l2 or to ⊥ if the token has been deleted from
l1. Similar to the lines mapping, the tokens mapping has one-to-one correspondence, except
when the tokens in l1 of V1 are deleted or the tokens in l2 of V2 are added. We use Mapl1,l2

:
tokens(l1) → tokens(l2) ∪ {⊥} to denote the mapping of tokens in l1 to their corresponding
tokens in l2. Similar to determining if a line in V1 (resp. V2) is deleted (resp. added), changed, or
unchanged discussed above, we use the mapping of tokens to determine whether a given token
in l1 (resp. l2) is deleted (resp. added), changed, or unchanged.

Using the mapping of lines, i.e., MapV1,V2
, and the mapping of tokens in changed lines, we

compute the following.

(i) An expression e1 at line l1 in V1 is deleted if (1) l1 is deleted from V1, or (2) l1 is changed
and every token in e1 is deleted from l1.

(ii) An expression e2 is added to line l2 in V2 if (1) l2 is added to V2, or (2) l2 is changed and
every token in e2 is added to l2.

(iii) An expression e1 at line l1 in V1 (resp. e2 at line l2 in V2) is changed if at least one of the
tokens in e1 (resp. e2) is changed.

(iv) An expression e1 at line l1 in V1 is unchanged if (a) l1 is unchanged, or (b) l1 is changed
but none of the tokens in e1 is changed or deleted.

(v) An expression e2 at line l2 in V2 is unchanged if (a) l2 is unchanged, or (b) l2 is changed
but none of the tokens in e2 is changed or added.

We say that an expression e1 at line l1 in V1 and an expression e2 at line l2 in V2 are corres-
ponding expressions, if (1) l1 and l2 are the corresponding lines, and (2) e2 is a changed version
of e1 or is same as e1. We use the tokens-based approach to determine if an expression that spans
over multiple lines is added, deleted, or changed, by matching its sub-expressions appearing on
different lines. To avoid identifying semantically equivalent statements like i = i+ 1 and i++ as
changed, we assume that the code has been normalized [97]. Moreover, we assume that on each
line, there exists at most one program statement or a part of it.

6.5 Classification of Delta Alarms
Existing VSATs [36, 133, 191, 207] broadly classify delta alarms only into two classes: newly
generated and impacted. For completeness, we define these classes while we describe our clas-
sification of delta alarms into six classes. The classification is based on code changes generating
the alarms, where the alarms-generating code changes are identified based on (1) the code map-
ping taken as input (Section 6.4), (2) analysis results on the previous version, and (3) program
dependence graphs generated for the alarms on both the versions.
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Figure 6.4: Classification of delta alarms into six classes.

6.5.1 Intuition Behind Our Classification of Delta Alarms
As changes between the versions V1 and V2 are of different types, so are the delta alarms gen-
erated due to these changes. Intuitively, these alarms should be processed differently as per the
type of the changes generating them. We believe that classifying delta alarms based on the type
of code changes is a more natural way to classify delta alarms, because it captures the causal
relationship, and such a classification can provide multiple benefits. For example, a delta alarm
that is newly generated because its POI got added in V2 can be differentiated from another newly
generated alarm whose POI already existed in V1 but the same POI was safe in V1. Based on
the reasons for their generation, these two types of alarms can be respectively classified into two
classes, e.g., poi-added and analysis result changed. Later, the process to inspect alarms in these
two classes can vary: for the alarms in the former class, generally the complete code on its back-
ward slice needs to be inspected, whereas for the alarms in the latter class, inspecting only the
changed code that impacts the alarm is sufficient. Moreover, such a classification of delta alarms
can help us identify classes that are more important than the others. For example, impacted delta
alarms generated due to code changes that are more likely to be semantically equivalent can be
deemed to be less important than the other impacted alarms.

Based on the observations above, we classify delta alarms into six classes shown in Fig-
ure 6.4. Following we describe these classes. We use the alarms shown Figure 6.3 to provide
examples of alarms in the classes.

6.5.2 Classification of Newly Generated Delta Alarms
The newly generated alarms are the ones which did not occur in the previous version.

Definition 6.5.1 (Newly Generated Delta Alarm). An alarm φpl2,v2 is called a newly generated
delta alarm if l2 is added in V2, or line l1 in V1 and l2 are the corresponding lines and no similar
alarm was reported for l1.

For example, D13, D15, and A27 are newly generated delta alarms on V2.

The existing VSATs do not further classify the newly generated alarms. In our technique,
we classify these alarms into three sub-classes, namely result-changed, POI-changed, and POI-
added. These sub-classes are defined below.
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6.5.2.1 Result-Changed Delta Alarm

Definition 6.5.2 (Result-Changed Delta Alarm). We call a newly generated delta alarm φpl2,V2
a

result-changed delta alarm if its POI is unchanged and no alarm of the property p was reported
for the POI’s corresponding expression in V1. �

In other words, for a result-changed delta alarm, its POI also exists in the earlier version and
analysis result for the POI is changed from safe in V1 to an alarm in V2. For example, A27 is
a result-changed delta alarm, because the corresponding POI in V1 is safe. This change in the
result is due to the change at line 11.

6.5.2.2 POI-Changed Delta Alarms

Definition 6.5.3 (POI-Changed Delta Alarm). We call a newly generated alarm φpl2,V2
a POI-

changed delta alarm if its POI is changed, and an alarm of the property p was reported for the
POI’s corresponding expression in V1. �

For example, D15 is a POI-changed delta alarm, because its POI y − 2 is changed from y in
V1 (i.e., y at line 15 in V1 is the corresponding expression of the alarm’s POI), and an alarm of
the same type was reported for the corresponding expression y in V1.

6.5.2.3 POI-Added Delta Alarms

Definition 6.5.4 (POI-Added Delta Alarm). We call a newly generated alarm φpl2,V2
a POI-added

delta alarm if its POI is added in V2, or its POI is changed and an alarm of the property p was
not reported for the POI’s corresponding expression in V1. �

For example, D13 is a POI-added delta alarm, because its line 13 is added in V2.

6.5.3 Classification of Impacted Alarms
As discussed in Section 6.3.2, the existing VSATs use different techniques to compute repeated
alarms which can be suppressed. In general, the repeated alarms that cannot be suppressed by a
VSAT are called impacted alarms.

For a given expression expr in version V , let cdDep+(expr, V ) be the set of transitive clos-
ure of data and control dependencies of expr. That is, transitive data and control dependencies
in cdDep+(expr, V ) correspond to program statements which appear in the backward slice gen-
erated for expr, and vice versa. Henceforth, we use dependency of expr to refer to a data or
control dependency that appears in the transitive closure of data and control dependencies of
expr.

Definition 6.5.5 (Modified Dependencies). We call a dependency d of an expression expr in V1

(resp. V2) a modified dependency if the following holds:

1. d is a data dependency (definition) and assignExpr(d) is deleted (resp. added) or changed;
or

2. d is a control dependency (conditional edge) and label(u→ v) is changed, or condExpr(u→
v) is deleted (resp. added) or changed. �

Definition 6.5.6 (Impacted Delta Alarm). An alarm φpl2,V2
is called an impacted delta alarm if
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(i) poi(φpl2,V2
) is unchanged, and a similar alarm φpl1,V1

was reported for the corresponding
(same) POI in V1; and

(ii) at least one of the dependencies in cdDep+(poi(φpl2,V2
), V2) or cdDep+(poi(φpl1,V1

), V1)
is modified. �

Note that presence of a modified dependency is also checked in cdDep+(poi(φpl1,V1
), V1)

(Case ii), because checking the presence of a modified dependency only in cdDep+(poi(φpl2,V2
), V2)

does not capture deletion of a data dependency from V1. For each impacted delta alarm φpl2,V2
,

there exists unique similar alarm φpl1,V1
corresponding to it where l1 and l2 are the corresponding

lines. We call these two alarms, φpl2,V2
and φpl1,V1

, corresponding alarms.
None of the existing VSATs further classify the impacted alarms. In our technique, we

classify those alarms into three sub-classes, namely data-dependency impacted alarms, value-
dependency impacted alarms, and control-dependency impacted alarms. These sub-classes are
defined below.

6.5.3.1 Data-dependency Impacted Alarms

For a given expression expr in version V , let dDep+(expr, V ) be the transitive closure of data
dependencies of expr.

Definition 6.5.7 (Data-dependency Impacted Alarm). Let φpl2,V2
be an impacted alarm, with

φpl1,V1
as its corresponding alarm. We call φpl2,V2

a data-dependency impacted alarm if at least
one of the data dependencies in dDep+(poi(φpl2,V2

), V2) or dDep+(poi(φpl1,V1
), V1) is modified.

�

The dependencies in dDep+(expr, V ) correspond to the program statements which appear
in the thin slice generated for expr in V , and vice versa. Therefore, in other words, an impacted
alarm φpl2,V2

is a data-dependency impacted alarm if the thin slice generated for it is different
from the thin slice generated for its corresponding alarm on V1. For example, A22 is a data-
dependency impacted alarm, because the data dependency of x at line 21 is modified.

6.5.3.2 Value-Dependency Impacted Alarms

For a given expression expr in version V , let vdDep+(expr, V ) be the transitive closure of data
and value dependencies of expr.

Definition 6.5.8 (Value-Dependency Impacted Alarm). Let φpl2,V2
be an impacted alarm, with

φpl1,V1
as its corresponding alarm. We call φpl2,V2

as a value-dependency impacted alarm if

1. there exists a modified dependency in vdDep+(poi(φpl2,V2
), V2), but the same modified

dependency is not present in dDep+(poi(φpl2,V2
), V2); or

2. there exists a modified dependency in vdDep+(poi(φpl1,V1
), V1), but the same modified

dependency is not present in dDep+(poi(φpl1,V1
), V1). �

The dependencies in vdDep+(expr, V ) correspond to the program statements which appear
in the value slice generated for expr in V , and vice versa. Therefore, in other words, an im-
pacted alarm φpl2,V2

is a value-dependency impacted alarm if the thin slices generated for it and
its corresponding alarm on V1 are same, but their value slices are different. For example, D29



130 Postprocessing of Delta Alarms

is a value-dependency impacted alarm, because (1) its value slice is different from the value
slice generated for its corresponding alarm D′29, but the thin slices of the two alarms are the
same. Their value slices are different, because the data dependency z = lib4() at line 8, which
is present in vdDep+(poi(D29)), is modified. Their thin slices are the same because this modi-
fied dependency does not appear in dDep+(poi(D29)) and no other data dependency in them is
modified.

6.5.3.3 Control-Dependency Impacted Alarms

Definition 6.5.9 (Control-Dependency Impacted Alarm). Let φpl2,V2
be an impacted alarm, with

φpl1,V1
as its corresponding alarm. We call φpl2,V2

as a control-dependency impacted alarm if

1. there exists a modified dependency in cdDep+(poi(φpl2,V2
), V2), but the same modified

dependency is not present in vdDep+(poi(φpl2,V2
), V2); or

2. there exists a modified dependency in cdDep+(poi(φpl1,V1
), V1), but the same modified

dependency is not present in vdDep+(poi(φpl1,V1
), V1). �

In other words, an impacted alarm φpl2,V2
is a control-dependency impacted alarm if the value

slices generated for the alarm and its corresponding alarm on V1 are same, but their backward
slices are different. For example, A25 is a control-dependency impacted alarm, because the data
dependency z = lib4() at line 8, which is present in cdDep+(poi(A25)), is modified. Moreover,
this modified dependency is not present in vdDep+(poi(A25)), and the value slices of the two
corresponding alarms are same.

We use the above six classes to (1) rank or suppress alarms based on anecdotal evidence (next
section); and (2) improve efficiency of AFPE (Sect. 6.7).

6.6 Ranking of Delta Alarms
In this section, we describe ranking of delta alarms, that we obtain by prioritizing the six classes
(discussed in the previous section). Like the existing alarms ranking techniques, our ranking of
delta alarms helps to (1) suppress low priority alarms when the available resources to manually
inspect all the alarms are limited; and (2) select first the alarms that are more likely to be errors
(even when all of them can be inspected).

6.6.1 Prioritization of Newly Generated and Impacted Alarms
We make the following observations for the two main classes of the delta alarms: newly gener-
ated and impacted.

6.6.1.1 Newly Generated Alarms

VSATs suppress each alarm that repeats in V2 when the alarm is not impacted by the changes
between V1 and V2. Thus, if a newly generated delta alarm is suppressed, the alarm will remain
suppressed on the subsequent versions, unless a code change between the next two subsequent
versions impacts the alarm. That is, the newly generated alarms are reported for the POIs that are
either added or changed as a part of the changes between the two versions. Thus, these alarms
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are directly related to the changes as opposed to the impacted alarms that are indirectly generated
due to changes in their transitive data and control dependencies.

6.6.1.2 Impacted Alarms

The changes made between V1 and V2 generally correspond to fixing of bugs, addition of fea-
tures, and refactoring. Failure to detect refactorings can result in generation of false impacted
alarms. Moreover, determining whether a change (made to fix a bug or add a feature) impacts an
expression is undecidable in general [178]. Hence the VSATs use conservative impact analysis
that is based on data and control dependencies. As a result, very often an expression gets (falsely)
identified as impacted [76], and in turn a large number of false impacted alarms are generated.

6.6.1.3 Prioritization of Newly generated and Impacted Alarms

Based on the observations above, we prioritize newly generated alarms over impacted alarms.
Next, we describe ranking of alarms in each of these two main classes, obtained by prioritizing
their sub-classes.

6.6.2 Ranking of Newly Generated Alarms
We rank newly generated alarms by assigning different priorities to their sub-classes. The prior-
itized sub-classes are Result-changed > POI-added > POI-changed. This prioritization is based
on the following observations.

1. For a result-changed alarm, its corresponding POI in V1 was reported as safe however the
same POI is an alarm in V2. The change in the analysis result is more likely to be due to
the side-effect of code changes and thus we believe that such alarms are to be inspected on
a higher priority.

2. We prioritize POI-added alarms over POI-changed alarms, because POIs of the former
alarms are newly added in the code whereas POIs of latter alarms are changed from POIs
existing in V1, and the newly generated alarms whose POIs are added are to be given higher
priority than the alarms whose POIs existed in the previous version (discussed above in
Section 6.6.1).

6.6.3 Prioritization of Classes of Impacted Alarms
Our prioritization of impacted alarms is based on the evaluation performed by Kumar et al. [116]
for the three comparable slices—thin, value, and backward slices. In their evaluation, Kumar et
al. observed that using the thin slice instead of the backward slice affects 29% of the alarms.
That is, removing the transitive control dependencies from backward slice affected 29% of the
alarms: the alarms got changed from false positives to errors. For the other 71% alarms, the
removal of the dependencies did not affect the alarms. Therefore, for a majority of alarms, their
transitive control dependencies do not affect the alarms (and in such cases only the transitive data
dependencies affect the alarms). Moreover, in the cases where the transitive control dependencies
affect alarms, the transitive data dependencies also affect the alarms. As a consequence of this,
we make the following observation.
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A change made to an impacted alarm’s transitive data dependency is more likely to impact
the alarm, compared to a change that directly or indirectly impacts the alarm’s transitive
control dependency. Since data-dependency impacted alarms are generated due to a change
in at least one of their transitive data dependencies, compared to the other alarms, they are
more likely to get impacted by the corresponding code changes.

Moreover, in their experiments, Kumar et al. [116] observed that using the value slice instead
of the backward slice affects only 2% of the alarms. That is, removing the control dependencies
from backward slice, that are not value dependencies, affects only 2% of the alarms, and adding
the value dependencies of the alarms to their thin slices reduced the affected alarms from 29% to
2%. Therefore, for most of the alarms, their control dependencies that are not value dependencies
are actually not relevant for them, whereas the value dependencies often are actually relevant for
the alarms. As a consequence of this, we can say that, when a change directly or indirectly
impacts an impacted alarm’s value dependency, the change is more likely to impact the alarm,
compared to the change that directly or indirectly impacts the alarm’s control dependency that
is not a value dependency. Value-dependency impacted alarms are generated due to changes
of the former type, whereas control-dependency impacted alarms are generated due to changes
of the latter type. Thus, compared to value-dependency impacted alarms, control-dependency
impacted alarms are less likely to get impacted by the corresponding code changes, i.e., they are
more likely to be false positives.

Based on the discussion above, we propose the following prioritization for the sub-classes of
impacted alarms:

Data-dependency impacted > Value-dependency impacted > Control-dependency impacted.

6.6.4 Grouping of Same-class Alarms
As alarms in a sub-class of impacted alarms still can be a large in number, we group together
impacted alarms that are generated due to the same modified dependencies. With this grouping,
the grouped alarms—that are generated due to the same reason(s)—get inspected together.

6.7 Improving Efficiency of AFPE
In this section, we first recapitulate the problem of poor efficiency of model checking-based
AFPE. Then we describe a class of model checking calls that are made for impacted alarms and
repeat across the two versions. We refer to these calls repeated model checking calls. Last,
we propose a technique to improve AFPE efficiency by identifying and skipping those repeated
model checking calls.

6.7.1 Recapitulation: The Problem of Poor AFPE Efficiency
Recall the discussion in Section 5.4.1. Existing AFPE techniques [34, 152, 153, 174] generate an
assertion corresponding to each alarm and use model checking to verify the assertions. An alarm
is eliminated as a false positive when its corresponding assertion holds. The techniques employ
context expansion approach [174] to use a model checker in a more scalable way. However, the
approach considerably increases the number of model checking calls, and hence, further degrades
efficiency of AFPE.
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Grouping of related assertions [34, 152] has been proposed to verify multiple related asser-
tions together, and thus to reduce the number of model checking calls. However, the number of
generated groups of related assertions is still large, and the context expansion approach gets ap-
plied to each group. Evaluations of the context expansion-based AFPE techniques [34, 45, 152,
153] indicate that processing an assertion or a group of related assertions, on average, results in
making five model checking calls and takes around three to four minutes. Due to the large num-
ber of model checking calls and each call taking considerable amount of time, applying AFPE to
alarms becomes time-consuming and ultimately renders AFPE unsuitable for postprocessing of
alarms generated on large systems. For example, processing 200 groups of related alarms would
require more than 10 hours.

6.7.2 Terms and Notations
Recall from Section 5.4.1 that the verification context in a model checking call is provided as a
function. Therefore, we use the terms context and function interchangeably. We use mcall(Φ, f)
to denote a model checking call that verifies a group of assertions generated for alarms Φ and in
the context of function f .

We use slice(Φ, f) to denote backward slice generated for a set of alarms Φ and in the context
of f , i.e., with f as the entry function. Note that while the declarations of global variables
appearing on the sliced code are outside the scope of f , they are still included in the sliced
code, otherwise the sliced code would not compile. We say that two slices are identical iff every
statement in one slice has a corresponding identical statement in the other slice, with the ordering
of the statements preserved; and vice versa.

6.7.3 Repeated Model Checking Calls for Impacted Alarms
We find that, model checking calls made during AFPE applied to impacted alarms can be same
as the calls made during AFPE applied to their corresponding alarms on the previous version.
We refer to such calls as repeated model checking calls. These calls repeat across the two ver-
sions because the code change(s) that generate an impacted alarm belong to only a few contexts
(functions), while majority of the contexts in which the corresponding assertion is to be verified
are unchanged. We illustrate this observation by means of Figure 6.3. Assume that the alarms
generated on the earlier version V1 have been processed using AFPE techniques. Consider the
three alarms generated on V1 for the POIs in bar. Performing grouping of related assertions
generated for those alarms, based on their data dependencies, results in two groups: {A′22} and
{A′25, D

′
29}. Verifying each group using context expansion results in making two model check-

ing calls per group: first in the context of bar and then in the context of foo.
Next, consider the four delta alarms generated on V2 for the POIs in bar. Performing group-

ing of related assertions generated for those alarms, based on their data dependencies, results in
three groups: {A22}, {A25, D29}, and {A27}. Verifying each group using context expansion
results in making two model checking calls per group: first in the context of bar and then in the
context of foo.

Consider the second group of assertions, {A25, D29}, generated for impacted alarms A25

and D29. The first model checking call made for this group is mcall({A25, D29}, bar). Note
that, between the two versions, there is only one change in bar (at line 21), and this change
does not impact the two alarms. As a result, slice({A25, D29}, bar) and slice({A′25, D

′
29}, bar)

are identical, and results of the two calls, mcall({A25, D29}, bar) and mcall({A′25, D
′
29}, bar),

ought to be the same. Therefore, mcall({A25, D29}, bar) is a repeated model checking call
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compared to the model checking calls made during AFPE applied on V1. During AFPE applied
to alarms generated on V2, if such repeated model checking calls are identified, the results of
applying AFPE to their corresponding alarms on V1 can be safely reused instead of making the
repeated calls again. Skipping those repeated calls improves the efficiency of AFPE applied to
alarms on V2.

Note that, the second model checking call for the same group, mcall({A25, D29}, foo) can-
not be identified as a repeated call, because the two slices, slice({A25, D29}, foo) and
slice({A′25, D

′
29}, foo) are not identical. On similar lines, the first and second model checking

calls made for {A22}, i.e., mcall({A22}, bar) and mcall({A22}, foo), are not repeated calls be-
cause the corresponding slices in the two versions are not identical. Moreover, none of the model
checking calls for {A27} is repeated, because A27 is a newly generated alarm which does not
have a corresponding alarm on V1 and hence no corresponding model checking calls.

Summarizing, among the six model checking calls required for delta alarms generated on V2,
mcall({A25, D29}, bar) can be identified as repeated and skipped.

6.7.4 Our Solution
As discussed earlier, AFPE using context expansion approach results in a large number of model
checking calls (Sections 6.7.1), and some of them can be repeated (Section 6.7.3). Recall that
the repeated calls exist for impacted alarms only: for newly generated alarms, there are no model
checking calls for their corresponding alarms on the previous version. In our evaluation of the
technique for ranking and classification of delta alarms, we found that around 87% of delta
alarms are impacted, while the remaining 13% are newly generated (Section 6.8.1.2). Consid-
ering the large number of impacted alarms, we design a technique for identifying and skipping
redundant model checking calls. As discussed above in Section 6.7.3, for a set of delta alarms Φ,
identification of a model checking call mcall(Φ, f) as redundant requires taking into account (1)
whether the alarms in Φ are impacted or newly generated, and (2) whether f is changed during
changes between the two versions.

For an impacted alarm φ, we use corrAlarm(φ) to denote its corresponding alarm on the
previous version. On similar lines, for a set of impacted alarms Φ, we use corrAlarms(Φ) to
denote the set of their corresponding alarms on the previous version.

Let Φg be a set of impacted alarms such that the assertions generated for them form a
group of related assertions. Recall that a model checking call mcall(Φg, f) is repeated iff
slice(Φg, f) is identical with slice(corrAlarms(Φg), f). Note that, the assertions generated for
corrAlarms(Φg) on the previous version need not be in the same group. For example, the call
mcall({A25, D29}, bar) would still be a repeated call, even if assertions generated for the alarms
on V1 are not in the same group. This is because, the computation of repeated model checking
calls depends on whether the verification context is changed, and not on how the assertions were
verified (together or individually).

6.7.4.1 Eliminating the Need for Comparison of the Slices

The existing techniques prune the code using program slicing before each model checking call:
mcall(Φ, f) verifies slice(Φ, f). When a model checking call is repeated, the slicing before
it is redundant. Hence, skipping slicing for such repeated model checking calls also can help
to improve AFPE efficiency. Based on this observation, we design our technique to compute
repeated model checking calls without computing slices.
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Recall that a delta alarm φ is identified as an impacted alarm if at least one of the dependen-
cies in cdDep+(poi(φ), V2) or cdDep+(poi(φ), V1) is modified (Section 6.5.3). During classi-
fication of delta alarms, for each identified impacted alarm, we store the modified dependencies
in those two PDGs separately. We call the modified dependencies computed for an impacted
alarm φ modified dependencies of φ. We use modDeps(φ) to denote the modified dependencies
in cdDep+(poi(φ), V2), and use modDeps(corrAlarm(φ)) to denote the modified dependencies
in cdDep+(poi(corrAlarm(φ)), V1). Therefore, the modified dependencies of an impacted alarm
φ are given as modDeps(φ) ∪ modDeps(corrAlarm(φ)).

Let f∗ denote the set of functions, that includes f and the functions that are directly or
indirectly called by f . We use funcs(modDeps(φ)) to denote the functions in which the modified
dependencies of an impacted alarm φ appear. These functions appear on the backward slice
of φ and are changed between the two versions. We use these functions to compute whether
slice({φ}, f) and slice(corrAlarms({φ}), f) are identical. These slices are identical only if

1. on V2, funcs(modDeps(φ)) ∩ f∗ = ∅, and

2. on V1, funcs(modDeps(corrAlarm(φ))) ∩ f∗ = ∅.

In other words, if in both the versions, none of the functions in f∗ has a statement which
corresponds to a modified dependency of the alarm, the two slices are identical. Using this
approach, for a set of impacted alarms Φ, we identify a model checking call mcall(Φ, f) as
repeated iff for every alarm φ ∈ Φ, the above two conditions hold.

Note that, determining whether the two slices are identical as described above does not take
into account changes made to declarations of global variables. The declarations of global vari-
ables are not a part of any function. A change in the declaration of a variable (its data type) on
those slices can result in different behaviors at the program points of the corresponding alarms.
Consequently, results of verifying those two slices can be different, and hence a call identified
as repeated using the approach above is not necessarily a repeated call. Therefore, the approach
above computes over-approximation of the repeated calls. The over-approximation might result
in a failure to eliminate false positives which could have been eliminated otherwise. We expect
such cases to be rare.

We illustrate misidentification of repeated calls by referring to the alarms shown in Fig-
ure 6.5. Due to the changes at lines 3 and 7, A19 is an impacted alarm. The code in the
functions bar and foo is not changed: statement corresponding to a modified dependency of
this alarm does not belong to these two functions. Therefore, for this impacted alarm, our
approach to compute repeated model checking calls identifies the two model checking calls,
mcall({A19}, bar) and mcall({A19}, foo), as repeated. The result of mcall({A′19}, foo) is
counter-example, and it will be reused for mcall({A19}, foo). However, due to the change at
line 3, the result of mcall({A19}, foo) is different from that of mcall({A′19}, foo): the index
expression never gets evaluated to a value higher than 399. Since the result of the skipped
(repeated) call mcall({A19}, foo) is counter-example, the context expansion approach requires
making the next call mcall({A19},main). There are two possibilities for mcall({A19},main):
either it verifies the assertion, or results in time out (TO)/out of memory (OM). In the former
case, the assertion will be eliminated as a false positive although the call mcall({A19}, foo) is
misidentified as a repeated call. In the latter case, or in the absence of the caller function main,
the alarm will not be identified and eliminated as a false positive.

In summary, although the above approach to compute repeated model checking calls allows
to eliminate the need to explicitly compute and compare slices in the corresponding verification
contexts, the approach can result in misidentification of repeated calls. Expecting that such cases
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Version V1

1 const int arr[]={0,13,28,46};
2 int largeArr[400];
3 unsigned int var;
4
5 int main(){
6 ...
7 foo(lib1());
8 }
9

10 void foo(int p){
11 unsigned int i= lib2();
12 unsigned int j= lib3();
13 if (i < 5 && j < i && p > 0)
14 bar(arr[i]-arr[j]);
15 }
16
17 int bar(int n){
18 var = lib3();
19 largeArr[n + var] = 0; A′19
20 }

Version V2

1 const int arr[]={0,13,28,46};
2 int largeArr[400];
3 unsigned char var;
4
5 int main(){
6 ...
7 foo(lib4());
8 }
9

10 void foo(int p){
11 unsigned int i= lib2();
12 unsigned int j= lib3();
13 if (i < 5 && j < i && p > 0)
14 bar(arr[i]-arr[j]);
15 }
16
17 int bar(int n){
18 var = lib3();
19 largeArr[n + var] = 0; A19

20 }

Figure 6.5: Example of an impacted alarm to illustrate over-approximation of computation of
repeated model checking calls.

would be rare in practice, we employ the approach above to compute over-approximated repeated
model checking calls. When failure to eliminate a false positive during AFPE is not to be allowed,
the repeated model checking can be computed by explicit computation and comparison of those
slices, which can reduce the gain in AFPE efficiency. This indicates trade-off between precision
(the number of false positives eliminated) and efficiency of AFPE.

6.7.4.2 Proposed Approach

Let Φ be a set of impacted alarms. The approach described above to compute whether a given
model checking mcall(Φ, f) is repeated, is based on checking whether the context of f is changed,
i.e., whether slice(Φ, f) and slice(corrAlarms(Φ), f) are identical. Note that when the context
of f is changed, we conservatively assumed that, due to the change, the verification result of
mcall(Φ, f) can be different from the verification results of mcall(corrAlarms(Φ), f). We call
this approach conservative approach.

The time taken by a model checking call that times out depends on the time threshold spe-
cified by the user, which is usually between two to eight minutes [34, 45, 152, 153], whereas
the other types of calls take, on average, around 30 seconds. Hence, on large applications, a
high percentage of AFPE time is taken by the model checking calls which result in time out.
Identifying in advance the calls which result in time-outs and skipping them will provide more
efficiency gain than the gain obtained by skipping an equal number of other calls. Based on this
observation, we aim to reduce the number of model checking calls that result in time out. To this
end, we propose an aggressive variant of the approach described above. This approach is based
on expectation that change(s) made to an existing function are minor, and do not significantly
affect its complexity. Thus, for an impacted alarm φ, when result of mcall(corrAlarm(φ), f) is
TO, the call mcall({φ}, f) is most likely to result in TO. Consequently, for a set of impacted
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Table 6.1: Summary of the two approaches proposed to compute whether a given model checking
call mcall(Φ, f) is repeated.

Status of
delta alarms, (Φ)

Context change status
for f (computed based

on comparing the slices)

AFPE results of the
corresponding alarms
on the earlier version

Computation of repeated
model checking calls

Conservative
approach

Aggressive
approach

All are impacted

Not changed - Repeated Repeated

Changed

Contains at least
one TO or OM

Not repeated Repeated

All are counter-examples Not repeated Repeated
All other cases Not repeated Not repeated

At least one is new,
and at least one

impacted

Not changed
Contains at least
one TO or OM

Not repeated Repeated

Does not contain
TO or OM

Not repeated Not repeated

Changed - Not repeated Not repeated

All are newly
generated

- - Not repeated Not repeated

TO = Time Out, OM = Out of Memory.

alarms Φ, if there exists φ ∈ Φ such that mcall(corrAlarm(φ), f) results in TO, mcall(Φ, f) is
also most likely to result in TO. Note that, this approach, unlike the conservative approach, also
takes into account the verification results of assertions generated for the corresponding alarms on
the previous version.

When the code being verified by a model checking call is complex, the call also can result
in out of memory (OM) instead of TO. Therefore, we use the similar approach to determine and
skip the model checking calls which are most likely to result in OM. In our aggressive approach,
in addition to identifying these calls (TO and OM) as repeated, we identify the following calls
as repeated: all the alarms in the group are impacted, verification context is changed, and the
corresponding verification results on the previous version are counter-examples. In these three
cases (TO, OM, and counter-examples), result of the verification call mcall(Φ, f) will be same
for all the assertions generated corresponding to Φ: TO, OM, or counter-example.

In Table 6.1, we summarize and compare the two approaches. The table indicates the follow-
ing:

1. Both the approaches identify a call mcall(Φ, f) as repeated when all the alarms in Φ are
impacted, and the verification context f is not changed. (In this case, for the assertions
generated corresponding to Φ, there is one to one mapping of the verification results across
the versions).

2. Conservative (resp. aggressive) approach identifies a call mcall(Φ, f) as not repeated
when all the alarms (resp. at least one alarm) in Φ are newly generated, irrespective of
whether the context f is changed.
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3. Aggressive approach identifies a call mcall(Φ, f) as repeated when the AFPE results on
the previous version are counter-examples or contain at least one TO or OM, irrespective
of whether the context f is changed.

Compared to the conservative approach, the aggressive approach identifies more model check-
ing calls as repeated and skips them, but it may fail to eliminate false positives which could have
been eliminated by the conservative approach.

6.8 Empirical Evaluation
In this section, we evaluate the proposed technique to classify and rank delta alarms (Section
6.6), and the technique to improve efficiency of AFPE applied to delta alarms (Section 6.7).

6.8.1 Evaluation of the Classification and Ranking Technique
We first describe the setup we used to evaluate the technique, and then discuss the evaluation
results.

6.8.1.1 Experimental Setup

Implementation As a baseline, we used implementation of impact analysis-based VSAT pro-
posed by Chimdyalwar and Kumar [36] (discussed in Section 6.3). The implementation is avail-
able in TCS ECA [197] that supports analysis of C programs. We implemented the delta alarms
classification technique using the analysis framework of TCS ECA. The framework provides
APIs to generate PDGs corresponding to backward, thin, and value slices, and accessing de-
pendencies in the PDGs. In the implementation of impact analysis-based VSAT, diff is used to
create a mapping of the code from two subsequent versions. We used the same code mapping as
the input to our delta alarms classification technique.

Selection of Applications and Alarms Evaluation of the techniques presented in this chapter
requires to analyze multiple versions of an application. We did not have access to multiple ver-
sions of the industry applications that we used in the earlier evaluations (Chapters 3, 4, and 5).
Therefore, to evaluate these techniques, we used open source applications whose at least two
versions are available online. Moreover, to limit the amount of analysis time, we restricted the
evaluation to relatively small applications. We randomly chose seven open source C applications
from the list of 100 applications used by Cha et al. [29], with the constraints that (1) application
size shown in the list should be greater than 10 KLOC and lesser than 20 KLOC, and (2) at least
two versions of the application should be available online. Table 6.2 lists these applications to-
gether with the total number of versions selected, and the first and last versions in our selection.
In total, we analyzed 59 versions using TCS ECA for AIOB verification property. The analysis
of the application versions selected, the computation of delta alarms, and our proposed postpro-
cessing of the delta alarms is performed using a machine with i7 2.5GHz processor and 16GB
RAM.

For each application, Table 6.2 summarizes the total number of tool-generated alarms (column
TCS ECA alarms), and delta alarms generated on its selected versions except the first version,
i.e., the number delta alarms generated on V2 (compared to V1) + the number of alarms generated
on V3 (compared to V2) and so on. The alarms generated on the first version are not a part of this
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Table 6.2: Experimental results showing the alarms in each of the classes of delta alarms.

Application
Details of the

versions selected
TCS

ECA

alarms

Delta

alarms

Newly generated

alarms
Impacted alarms

Total

version

First

version

Last

version
RC PA PC Total DD VD CD Total

archimedes 15 0.0.8 2.0.0 6373 4183 0 328 15 343 215 578 3047 3840

auto-apt 3 0.3.22 0.3.23 178 174 0 0 0 0 0 84 90 174

dict-gcide 2 0.48.1 0.48.2 192 16 0 5 0 5 0 7 4 11

gzip 9 1.3.9 1.9 1514 1446 0 223 1 224 59 1118 45 1222

mtr 12 0.73 0.85 803 400 0 28 0 28 12 200 160 372

rhash 15 1.2.4 1.3.7 245 207 0 17 0 17 13 64 113 190

smp-utils 3 0.96 0.98 484 484 0 255 0 255 0 2 227 229

Grand Total 9789 6910 0 856 16 872 299 2053 3686 6038

RC = Result-changed, PA = POI-added, PC = POI-changed, DD = Data dependency impacted,
VD = Value dependency impacted, and CD = Control dependency impacted.

table, because analysis of this version is not version-aware: no previous version is available to
suppress alarms generated on this version.

6.8.1.2 Experimental Results

Using the technique from Section 6.5, we classified delta alarms generated on the selected ver-
sions. Table 6.2 presents the number of alarms that belonged to each of the six classes proposed.
Inspecting the table, we make the following observations.

• Around 70% of the tool-generated alarms get reported as delta alarms; the remaining
alarms are suppressed by the VSAT.

• The impacted alarms dominate the newly generated alarms: around 87% delta alarms are
impacted while the remaining 13% are newly generated.

• Majority (98%) of the newly generated alarms belong to POI-added class, whereas six out
of the eight applications had no POI-changed alarms at all.

• Among the impacted alarms, only 5% are data dependency impacted alarms: only a small
fraction of impacted alarms are generated due to changes in their transitive data depend-
encies.

• Among the impacted alarms, 34% and 61% respectively are value dependency impacted
and control dependency impacted alarms.

Recall that, in the ranking scheme of Figure 6.4, result-changed alarms are assigned the
highest priority. In the evaluation, no newly generated alarm is a result-changed alarm. A pos-
sible reason to this could be that these applications are well tested or actually no such error
existed in these applications. Since the control dependency impacted alarms are most likely to
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be false impacted alarms (Section 6.6.1.2), they can be suppressed. Thus, overall, the proposed
ranking allows to identify around 61% of delta alarms (3686 out of 6038) as less likely to be
errors than the others. Therefore, these alarms can be suppressed when the resources (time)
available to manually inspect delta alarms are limited.

6.8.2 Evaluation of Improvement in AFPE Efficiency
We first describe the setup we used to evaluate the technique proposed for improving AFPE
efficiency, and then discuss the evaluation results.

6.8.2.1 Experimental Setup

Implementation To evaluate the technique proposed to improve efficiency of AFPE, we im-
plemented a series of state-of-the-art techniques that have been proposed for AFPE. This imple-
mentation is same as the one used to evaluate the technique for reuse of AFPE results across
multiple partitions (Section 5.5.2). For the sake of completeness, we recapitulate main steps of
the implementation. We first performed grouping of related assertions [34] to reduce the over-
all number of model checking calls by processing related assertions together. For scalability
of model checking, the code is sliced with respect to assertions in each group using backward
slicing [211] (application-level slicing). The code slices generated for each group are then pro-
cessed using techniques that over-approximate loops whose bound cannot be determined static-
ally [35, 46]. The assertions in the over-approximated code are verified using context expansion
approach [153, 174]. We used CBMC [28] as the model checker to verify the assertions. Be-
fore making a model checking call in the context a function, the code is sliced considering that
function as the entry-point [45] (function-level slicing). Therefore, when a model checking call
is skipped due to it being identified as repeated, the corresponding function-level slicing also
can be skipped. Henceforth, we use model checking call to mean both the call to a slicer for
function-level slicing and the subsequent call to a model checker.

We implemented AFPE in three different settings:

1. Original: AFPE in the original setting, i.e., without applying any of the approaches to
improve AFPE efficiency.

2. Conservative: AFPE in which repeated model checking calls are computed using the con-
servative approach.

3. Aggressive: AFPE in which repeated model checking calls are computed using the ag-
gressive approach.

Selection of applications and alarms Table 6.3 presents the applications and their versions
that we selected to evaluate the technique. We analyzed the versions of the selected applications
using TCS ECA for AIOB verification property, computed delta alarms from alarms generated
by TCS ECA, and performed grouping of related assertions generated for the delta alarms. The
third column in the table presents the number of groups of related assertions on each version.

6.8.2.2 Experimental Results

We verified the related groups of assertions in the three settings implemented for AFPE: original,
conservative, and aggressive. For the sake of consistency with the evaluation in Chapter 5, each
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Table 6.3: Evaluation results of the technique to improve AFPE efficiency by identifying the
repeated model checking calls across the two versions.

Appli-
cation

Version
Groups

of
related

assertions

Model checking calls
Total time taken

(in seconds)
False positives

eliminated
Origi-

nal
% reduction Origi-

nal
% reduction Origi-

nal
Conser-
vative

Aggr-
essiveConser-

vative
Aggr-
essive

Conser-
vative

Aggr-
essive

archimedes 0.1.0 109 128 40.6 87.5 3459 31.0 72.6 1 1 0

archimedes 0.1.1 111 139 86.3 94.2 3434 64.5 79.1 1 1 1

archimedes 0.1.2 112 134 84.3 95.5 3505 54.2 81.3 1 1 1

archimedes 0.1.3 109 131 92.4 100.0 3730 70.7 84.6 1 1 1

archimedes 0.1.4 109 131 92.4 100.0 3693 70.6 84.7 1 1 1

archimedes 0.7.0 112 134 91.8 99.3 3712 70.9 84.9 1 1 1

archimedes 1.0.0 112 134 100.0 100.0 3713 96.6 96.6 1 1 1

archimedes 1.2.0 105 127 62.2 75.6 3471 37.3 61.7 1 1 1

archimedes 1.5.0 110 132 99.2 100.0 3585 95.0 94.5 1 1 1

archimedes 2.0.0 137 165 74.5 80 4637 54.1 66.5 1 1 1

smp_utils 0.98 37 78 39.7 100.0 24807 3.5 98.6 27 26 26

model checking call was set to time out after 10 minutes. For AFPE performed in each setting,
we computed (1) the number of model checking calls that were made, (2) the time taken, and
(3) the number of false positives eliminated. The time taken includes the time required for the
entire processing after the groups of related assertions are generated. Table 6.3 presents these
results for each of the settings. The number of model checking calls made and time taken, in
both conservative and aggressive settings, are shown as percentage of reduction compared to the
original setting. The results indicate the following:

• The conservative approach reduces the number of model checking calls by up to 100%,
with the median reduction of 86.3%. The reduction in model checking calls reduces the
total AFPE time by up to 96.6%, with the median reduction of 64.5%.

• The aggressive approach reduces the number of model checking calls by up to 100%, with
the median reduction of 99.3%. The reduction in model checking calls reduces the AFPE
time by up to 98.6%, with the median reduction of 84.6%.

Only in one instance, aggressive setting fails to eliminate one false positive that has been
eliminated by the original and conservative settings (archimedes 0.1.0 version). The number
of false positives eliminated from alarms generated on archimedes application is much lower
compared to smp_utils application. In our manual analysis, we found that a large number of
model checking calls resulted in out of memory because the code has multiple large-size arrays
and a large number of calculations involving variables of floating point data types.

The results on smp_utils indicate that both the conservative and aggressive settings eliminate
one false positive less than the ones eliminated by the original setting. We found that, those
two settings failed to eliminate the false positive due to over-approximation of computation of
repeated model checking calls. In this particular case, the model checking call on the earlier
version resulted in time out, and the call on the new version was identified as repeated, and
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thus TO result was reused. However, the same call in the original setting results in verification
success. The context of the verification is not changed but the size of a global array variable
(Section 6.7.4.1). This indicates the impact of over-approximation of computation of repeated
model checking calls.

Note that, higher reduction in the number of model checking calls does not imply similar
reduction in the time: the reduction in time is smaller than the reduction in the number of calls.
This occurs because the total AFPE time also includes the time to over-approximate loops. The
proposed approach to repeated calls identification does not reduce the time required for approx-
imation of the loops.

Like any other empirical study, the evaluations of the proposed delta alarms classification
technique (Section 6.8.1) and technique to improve AFPE efficiency (Section 6.8.2) are subject
to threats to validity. Since these evaluations are on similar lines to evaluations in Chapters 3, 4
and 5, we discuss the threats to validity of all these studies in Conclusions chapter (Section 7.3).

6.9 Related Work
In this chapter, we proposed two techniques: one to classify and rank delta alarms, and the other
one to improve efficiency of AFPE. Thus, we compare them with the techniques which employ
similar categories of the postprocessing approaches, namely ranking, pruning, and AFPE.

Ranking of Alarms The existing techniques to rank alarms employ different techniques such
as statistical analysis [114], history of the bugs and alarms fixing, and even feedback from the
user. Among them, the techniques that are based on history of fixing of alarms [103, 104] and
bugs [212] prioritize alarms by analyzing software change history. Thus, our technique is similar
to them. However, the underlying method to prioritize alarms is different: these techniques
analyze the change history to mine commonly/quickly fixed alarms and bugs, while our technique
is based on the causal relationship and thus is orthogonal to them. Heo et al. [86] have proposed
a technique to rank alarms generated on evolving code. They compute a graph that concisely and
precisely captures differences between the derivations of alarms produced by a static analysis
tool before and after the change. Later, they perform Bayesian inference on the graph, which
enables to rank alarms by likelihood of relevance to the change.

As the alarms in the sub-classes of impacted alarms are still large in number, they can be
further ranked using the other ranking techniques.

Pruning of Alarms The techniques in this category classify alarms mainly into two classes,
actionable and non-actionable ones [155]. The non-actionable alarms being more likely to be
false positives, they are not reported to the users. The techniques vary based on the methods
they employ to achieve the classification, and a majority of the techniques are based on machine
learning [77, 221]. The version-aware static analysis techniques (VSATs) [36, 117, 133, 191,
207] also belong to this category as they suppress a subset of the alarms generated, calling them
as non-impacting or not important. As discussed (Section 6.3), these VSATs use code changes
between the two versions only to compute delta alarms but not to postprocess them further. Our
technique uses the code changes, due to which the delta alarms are generated, to postprocess
those alarms further. Although our ranking and pruning technique is designed to postprocess
delta alarms independently of the techniques generating them, it can also be applied on its own:
the input to the technique can be the tool-generated alarms instead of delta alarms. To the best
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of our knowledge the other classification techniques do not use the code changes between the
versions and relate them with the generated alarms.

Automated False Positives Elimination Techniques proposed for AFPE primarily address the
issues associated with AFPE, namely poor-performance and non-scalability to large systems.
The existing techniques proposed to improve efficiency of AFPE are based on grouping of the
assertions [34, 152] or follow methods to predict result of a given model checking call [153].
Even though these techniques are applied, still a large number of model checking calls get made
due to the context expansion. Our technique uses code change information to determine whether
a call being made is repeated compared to calls made during AFPE on the previous version, so
that result from the previous version can be reused and the call can be skipped. To the best of
our knowledge, none of the existing techniques for AFPE efficiency improvement is applied in
the context of evolving software or based on (any kind of) reuse of the results.

As discussed above, the proposed two techniques are orthogonal to the existing postpro-
cessing techniques that implement the similar approaches. Thus, they can be combined with
the existing techniques to obtain more benefits as compared to the benefits obtained by applying
them individually.

6.10 Conclusion
In this chapter, based on our observation that the existing version-aware static analysis techniques
do not use code changes to further postprocess delta alarms, we proposed two techniques to
postprocess those delta alarms by taking into account the code changes. The first technique
classifies delta alarms into six sub-classes based on the type of changes generating them. Then it
ranks the alarms by assigning different priorities to the classes identified. The prioritization of the
classes is based on empirical evaluation performed for value slice, which suggests that the three
comparable slices—backward, value, and thin—have varying number of program statements
and those statements affect the point of interest differently. Our evaluation of the proposed
ranking technique, performed using 9789 alarms generated on 59 versions of seven open source
C applications, indicates that

The proposed classification and ranking of delta alarms help to identify 61% of delta
alarms as less likely to be errors than the others.

In the postprocessing of delta alarms, we also targeted improving efficiency of AFPE applied
to the alarms. The second technique identifies a subset of model checking calls that repeat across
versions, and for the repeated calls, it reuses results of the corresponding calls in AFPE on the
previous version. We have proposed computation of over-approximation of repeated calls to skip
function-level slicing calls as well. To compute repeated calls, we presented two approaches:
conservative and aggressive. The aggressive approach identifies more repeated calls, but may fail
to eliminate some false positives which could have been eliminated otherwise. Our evaluation of
the technique, using delta alarms generated on 11 versions of two applications, indicates that
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The conservative approach to compute repeated model checking calls reduces the number
of model checking calls by median of 84.3%, which in turn reduces the total AFPE time by
64.5%.

The aggressive approach reduces the number of model checking calls by median of
99.3%, which in turn reduces the total AFPE time by 84.6%.

The evaluation of the technique proposed for AFPE efficiency improvement is based on delta
alarms generated for two applications. The evaluation results are encouraging. In the future,
we plan to evaluate this technique on a large number of delta alarms generated on a variety of
industry and open source applications.



Chapter 7

Conclusions

In this chapter, first we summarize the main contributions of this thesis. Then we discuss threats
to validity of our findings, and possible directions for future research.

7.1 Contributions
Automated static analysis tools (ASATs) help to detect common programming errors like division
by zero and array index out of bounds as well as to certify absence of such errors in safety-
critical systems. However, these tools are known to generate a large number of false alarms
(false positives). Partitioning those alarms into true errors and false positives requires manual
inspection. The effort required to manually analyze the alarms and the large number of false
positives among them have been identified as the primary reasons for underuse of ASATs in
practice.

To address the problem of large number of false positives and the cost associated with their
manual inspection, scientific literature has extensively studied the ways of improving precision
of ASATs. However, given that verification problems are undecidable in general, reporting of
false positives by these tools is inevitable. Furthermore, many times, the tools compromise on
precision to achieve analysis scalability or improve performance, further worsening the number
of false positives. Postprocessing of alarms—processing the alarms after they are generated—
has been the alternative approach widely researched to address the problem of alarms and the
inspection cost associated with them.

Throughout this thesis, we have discussed the topic of postprocessing of alarms. In Chapter
1, we asked the following main research question.

RQ: How can we improve postprocessing of static analysis alarms?
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To answer the main question above, we first had to understand state-of-the-art techniques
and approaches that have been proposed for postprocessing of alarms. To this end, we asked the
following research question.

RQ 1: What approaches have been proposed for postprocessing of alarms?

In Chapter 2, we answered the above research question by surveying techniques that have
been proposed for postprocessing of alarms. We performed the survey by conducting a system-
atic literature search, in which we combined keywords-based database search and snowballing.
The search resulted in identifying 130 relevant research papers. In our categorization of postpro-
cessing approaches proposed in these papers, we identified six main categories of the approaches:
clustering, ranking, pruning, automated false positives elimination (AFPE), combination of static
and dynamic analyses, and simplification of manual inspection. We studied and summarized the
merits and shortcomings of those categories to assist users and designers/developers of ASATs to
make informed choices. We find that the identified approaches are complementary and provide
an opportunity to combine them.

Since our work aims at verifying safety-critical systems in the industry setting, we studied
the techniques that are applicable for code proving—sound clustering, ranking, AFPE, and sim-
plification of manual inspection—and identified their limitations, listed below.

1. Clustering of alarms is commonly used to reduce the number of alarms. However, state-
of-the-art clustering techniques fail to group similar alarms, e.g., when the similar alarms
belong to different branches of an if statement (Section 3.2).

2. Partition-wise postprocessing of common-POI alarms—the alarms generated for the same
POIs but belonging to multiple partitions—results in repetitive processing. For example,
manual inspection of alarms and automated false positives elimination require perform-
ing the same activity, or a part of it, multiple times for a group of common-POI alarms.
As a result of the repetitive processing, the postprocessing of alarms incurs redundancy.
However, none of the existing postprocessing techniques is designed to eliminate the re-
dundancy by taking into account that the alarms are generated for the same POI.

3. Although the context expansion approach has helped model checking-based AFPE to use a
model checker in a more scalable way, the approach considerably increases the number of
model checking calls. As a result, AFPE performs poorly in terms of efficiency. The poor-
performance ultimately renders AFPE unsuitable for postprocessing of alarms generated
for large systems.

4. State-of-the-art techniques proposed for version-aware static analysis of evolving software
take code changes into account only to compute delta alarms but not to postprocess the
alarms further. During further required postprocessing of delta alarms, taking into account
the code changes due to which the alarms are generated, helps to improve the postpro-
cessing. These improvements are missed by the existing postprocessing techniques.

The above limitations indicate areas of improvement for the existing postprocessing tech-
niques. Our work in the thesis targets to overcome those limitations.

In our study of alarms clustering, we found that Limitation 1 discussed above is due to the
traditional reporting of alarms at the program points where their POIs are located. This way of
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reporting alarms restricts identifying fewer alarms as dominant for the alarms appearing in those
limitation scenarios. Hence, we asked the following research question.

RQ 2: How can we automatically group similar alarms that state-of-the-art alarms
clustering techniques fail to group?

Since the limitations of alarms clustering techniques arise due to reporting alarms at the
locations of POIs for which the alarms are generated, the solution to the problem required a
novel approach to change the alarms reporting locations (repositioning of alarms). Therefore,
motivated by the work of Gehrke et al. [71], in Chapter 3 we proposed a technique to reposition
alarms. We designed the technique to safely reduce the number of alarms (primary goal) by
merging two or more similar alarms at a new program point. We observed that, in addition to
the reduction, repositioning of alarms also provides an opportunity to report the alarms closer to
their cause points (secondary goal). This reporting helps to reduce code traversals that one has
to perform during manual inspection of alarms.

Repositioning alarms for the two goals requires identifying repositioning locations such that
the results are maximized. To systematically identify such locations, we presented a data flow
analysis-based technique. We have evaluated the technique using 33,162 alarms generated by a
commercial static analysis tool, TCS ECA, on 20 open source and industry applications. The
evaluation results indicate that,

Repositioning of alarms helps to reduce the number of alarms up to 20%, with median
reduction of 7.25%.

Contrary to our expectations, the median reduction observed during the experimental eval-
uation is limited. To understand why the median reduction is limited, we studied the reasons
due to which the upward repositioning is stopped. For each reason, we measured the number
of instances in which the repositioning is stopped due to that reason. In this study we observed
that, in the majority of the cases, the upward repositioning of alarms is stopped due to this con-
servative assumption made about controlling conditions of the alarms when the alarms appear
in only one branch of the if statements. We found that the limited reduction in the number of
alarms was primarily due to this conservative assumption. To overcome this limitation we asked
the following research question.

RQ 3: How can we improve the reduction in the number of alarms obtained by reposi-
tioning them?

During our study of the repositioning limitation cases, we found that a large number of con-
trolling conditions which stop upward repositioning of alarms do not affect the alarms. There-
fore, identifying each controlling condition of an alarm, either as impacting or non-impacting,
can help to consider or ignore the effect of the condition during repositioning and, in turn, to
reposition the alarm further upward in the code. The further repositioning can result merging
this alarm with similar one(s), and reduce the overall number of alarms.

Based on this observation in Chapter 4 we designed a technique to classify each control de-
pendency of an alarm either as impacting or non-impacting. We identified a transitive control
dependency of an alarm as a non-impacting control dependency (NCD), only if it does not af-
fect whether the alarm is an error. Since computation of NCDs of an alarm is undecidable in
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general, we followed an aggressive approach to compute approximated NCDs of alarms. During
repositioning alarms, considering the effect of their NCDs allows to merge more similar alarms
together, and thus, to further reduce the number of alarms. Summarizing,

Computing non-impacting control dependencies of alarms and taking into account their
effect during repositioning helps to improve the reduction obtained.

We evaluated the improved repositioning technique using a large set of alarms on three kinds
of applications: 16 open source C applications, 11 industry C applications, and 5 industry CO-
BOL applications. We also compared the improved repositioning technique with the original
repositioning in which alarms are repositioned without taking into account the effect of NCDs of
the alarms. The evaluation results indicate that,

Compared to the original repositioning technique, the improved repositioning technique
reduces the number of alarms by up to 36.09% and with median reduction of 10.48%.

Our approach to approximately compute NCDs of similar alarms is observation-based, and
the computation is based on a group of similar alarms. This approximated approach is required
because (1) computing whether a transitive control dependency of an alarm is an NCD requires
first determining whether the alarm is an error; and (2) a high percentage of alarms resulting after
applying the original repositioning technique are still similar, and therefore reducing their num-
ber is important. In the evaluation of the technique, we performed manual analysis of a subset
of repositioned alarms to evaluate effectiveness of the approximated approach. In the analyzed
cases, we found that the approximated approach helped to reduce the number of alarms by 70%.
However, the approximation resulted in 2% of the repositioned alarms detecting spurious errors.
Therefore,

Our approach to approximately compute NCDs of similar alarms is effective: the approx-
imation helps to safely reduce the number of alarms while it detects only a few repositioned
alarms as spurious errors.

In Chapter 5, we turned our attention to the limitation that existing postprocessing techniques
do not address the redundancy in postprocessing of common-POI alarms (Limitation 2). The
redundancy primarily occurs due to performing the same processing repeatedly for common-
POI alarms, e.g., manual inspection of alarms and AFPE. We focus on manual inspection of
alarms and AFPE because the manual effort to inspect alarms is costly and poor performance of
AFPE has been identified as Limitation 3.

To eliminate the redundancy in manual inspection and AFPE of common-POI alarms (dis-
cussed above), we asked the below research questions.

RQ 4: How can we reduce redundancy in manual inspection of common-POI alarms?

RQ 5: How can we reduce redundancy in AFPE applied to common-POI alarms?

To reduce the redundancy postprocessing of common-POI alarms, we postprocessed them
by taking into account that they are generated for the same program point. The redundancy
reduction required processing a group of common-POI alarms together. Therefore, we proposed
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a method to group common-POI alarms and inspect them together. When a grouped alarm is
found to be a false positive in the context of each of the functions identified for the group, all
the grouped alarms are false positives. Since the proposed method eliminates the need to inspect
each common-POI alarm individually, the method reduces the redundancy incurred during their
manual inspection. Our evaluation of the method indicates that,

Grouping of common-POI alarms and inspecting them based on the functions identified
for each group allows to eliminate alarms in 66% of the groups just by inspecting only one
alarm from each group. Skipping inspection of the other alarms reduces 60% of the effort
required to manually inspect common-POI alarms.

On similar lines of manual inspection of common-POI alarms, applying model checking-
based AFPE to common-POI alarms results in repetitive model checking calls. Therefore, to
eliminate the redundancy incurred due to those repeated calls, we reused results of model check-
ing calls across the partitions. The reuse of results for common-POI alarms reduces the number
of model checking calls, and thereby reduces the time taken by AFPE. Our evaluation of the
reuse-based technique indicates that,

Reusing results of model checking calls across partitions for common-POI alarms allows
to reduce the number of model checking calls by up to 58.5%, with median reduction of
19.8%. Skipping those repetitive model checking calls reduces the total AFPE time by up
to 56%, with median reduction of 12.15%.

In Chapter 6, we proposed techniques to overcome the limitation of state-of-the-art tech-
niques proposed for version-aware static analysis techniques (Limitation 4). These techniques
use code changes between two versions only to compute delta alarms but not to process the
alarms further. Based on prior evaluations of program slicing techniques, we found that different
program statements affect alarms differently. Consequently, changes made in statements affect
the alarms differently, and classes of those changes can be used to classify and prioritize the
alarms. Based on this observation, we asked the following question.

RQ 6: How can we rank delta alarms based on types of the code changes generating
them such that the alarms ranked higher are more likely to be errors than the alarms ranked
lower?

Next, we revisited our aim to improve efficiency of AFPE applied to delta alarms (Limitation
3).

RQ 7: How can we use code changes to improve efficiency of AFPE applied to delta
alarms?

In this chapter, we proposed two techniques to postprocess delta alarms by taking into ac-
count the code changes generating the alarms. First we classified delta alarms into six classes
depending on the classes of the code changes generating them. Next, by assigning different prior-
ities to the classes of changes, based on the type of changed statements, we ranked delta alarms.
Our evaluation of the proposed ranking technique, performed using 9789 alarms generated on 59
versions of seven open source C applications, indicates that
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The proposed classification and ranking of delta alarms help to identify 61% of delta
alarms as less likely to be errors than the others.

Since impacted alarms are repeated across the two versions, the calls to a model checker
made during AFPE applied to the impacted alarms are also repeated when the code previously
verified by the model checker is not changed. Based on this observation, we proposed a technique
to identify repeated model checking calls and reuse results of the corresponding calls from AFPE
on the previous version. Skipping those repeated calls allows to reduce the time taken by AFPE.
To further reduce time, we skipped slicing calls made before repeated model checking calls.
This improvement required approximately computing repeated calls, i.e., computing the calls
without actually comparing the code sliced in the verification contexts from the two versions.
To compute repeated calls, we presented two approaches: conservative and aggressive. The
aggressive approach identifies more repeated calls, but may fail to eliminate some false positives
which could have been eliminated otherwise. We believe that, depending on the efficiency to be
obtained, one of the two approaches can be selected. Our evaluation of the technique, using delta
alarms generated on 11 versions of two applications, indicates that

The conservative approach to compute repeated model checking calls reduces the number
of model checking calls by median of 84.3%, which in turn reduces the analysis time by
64.5%.

The aggressive approach reduces the number of model checking calls by median of 99.3%,
which in turn reduces the analysis time by 84.6%.

7.2 Discussion
As summarized above, the contributions of this thesis include several techniques to improve
postprocessing of alarms. We obtain improvements by considering three different perspectives:
the reporting methodology of alarms (repositioning of alarms), the nature of applications being
analyzed (partitioned-code), and the nature of analysis (version-aware static analysis). We have
observed that complexity of the problem of alarms’ postprocessing is not only related to theoret-
ical limitations of static analysis, such as undecidability [118], but also to diversity of goals static
analysis can be applied for, applications being analyzed, and programming languages.

• Postprocessing of alarms differs greatly depending on whether the purpose of the analysis
is bug finding or code proving (Chapter 2). For example, techniques to postprocess alarms
generated on safety-critical applications would be different from the techniques applicable
for postprocessing of alarms generated on applications that are not safety-critical. Tech-
niques applicable for postprocessing of alarms generated by code proving tools can be
applied to alarms generated by bug finding tools, but the converse is not true. Depending
on the analysis purpose, the techniques to be used for alarms postprocessing vary.

• For effective postprocessing of alarms, the techniques need to take into account the type
of applications being analyzed. For example, techniques which are suitable to process
alarms generated on evolving code (Chapter 6) are not suitable to process alarms gen-
erated on partitioned-code (Chapter 5), and vice versa. When an application belongs to
multiple types, applying techniques which are applicable to only a particular type of ap-
plications are not sufficient, and the postprocessing incurs redundancy. For example, ana-
lyzing partitioned-code of an evolving application would require combining techniques
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that take into account the nature of multiple versions (relative correctness) and multiple
partitions.

• There exists a variety in applications due to the programming languages. Analysis of pro-
grams written in different languages have different characteristics. These characteristics
make postprocessing of alarms much more challenging. For example, precise analysis ofC
programs suffers from imprecision due to the programming characteristics such as pointers
and accessibility to hardware (memory) registers. Precise analysis of C++/Java programs
requires to consider the programming features such as aliases, virtual functions, (multiple)
inheritance, and templates. Postprocessing of alarms in general requires re-analysis of the
program, and hence, all those characteristics of the language need to be considered in the
implementation of postprocessing techniques. These characteristics can affect the results
of the techniques. For example, in the evaluation of the improved repositioning technique
(Chapter 4), that is based on non-impacting control dependencies, we find that the reduc-
tion in the number of alarms obtained on C and COBOL applications vary considerably.
The reason for the difference in the results could be that the COBOL applications were
banking applications where the business logic is implemented in a series of nested if con-
ditions whereas the applications written in C were data and file processing applications.
Moreover, C applications were rich in pointers whereas COBOL applications do not use
pointers.

In our evaluations of the techniques, we found that the results varied considerably based
on the applications even if they are written in the same language. This indicates that some
applications had more patterns of the alarms to which the techniques were applicable, as
compared to the other applications.

Therefore, to improve postprocessing of alarms, research needs to be continued along mul-
tiple lines to support different factors like the analysis purposes, different programming paradigms,
and types of applications. Wherever there is an opportunity, multiple techniques should be com-
bined, e.g. postprocessing of alarms generated on partitioned-code of an evolving application.

7.3 Threats to Validity
This section discusses threats to validity of our findings from evaluations of the techniques
presented in Chapters 3, 4, 5, and 6. Threats to validity of our findings in Chapter 2 are sep-
arately discussed in Section 2.3.3.

7.3.1 Construct Validity
Threats to construct validity concern how accurately we operationalize the notions of efficiency
of AFPE, and and manual inspection effort.

We measured the AFPE efficiency gain obtained due to the proposed techniques (Chapters
5 and 6), by measuring difference in clock-time taken by the two settings: AFPE without the
techniques, and AFPE with the techniques. The efficiency gain also can be measured in terms
of the number of model checking calls reduced, and the number of alarms skipped from the
processing. The measurement based on these different parameter(s) would result in different
results. Since the user perceives a reduction in time taken as an improvement when comparing
two techniques, we measured efficiency gain as the difference in time taken.
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Measuring reduction in effort, due to the method proposed to inspect common-POI alarms,
required to measure manual effort to inspect alarms (Section 5.3). We measured the inspection
effort as the clock-time taken to manually inspect those alarms. The inspection effort also can
be measured as the number of alarms inspected per unit of time, the number of lines of code (or
functions) traversed, etc. During evaluation of existing techniques that have been proposed to
reduce effort required for manual inspection of alarms, time taken has been used to measure the
effort [54, 150]. On similar lines, we measured the inspection effort as the time taken.

7.3.2 Internal Validity
Threats to internal validity concern the extent to which the observations are correctly derived
from the experimental data. In our experiments, threats to internal validity concern selection of
alarms to evaluate the techniques, implementation of the techniques, and measurement of manual
inspection of effort.

7.3.2.1 Selection of Alarms

The findings of the presented techniques depend on alarms selected in the evaluation. The alarms
generated vary as per the verification properties, type of applications, and static analysis tools
used. To mitigate bias towards a particular category of alarms, we selected a large number of
alarms generated for five verification properties and on a variety of applications. While selecting
the properties, we ensured that the properties are based on different underlying analyses. For
example, the properties array index out of bound and division by zero require analyzing code to
compute values of variables, while illegal dereference of a pointer requires performing pointer
analysis. Moreover, the property uninitialized variables requires computing whether variables at
a program point are defined along all paths, and this analysis is different from value and pointer
analyses.

Alarms generated by ASATs vary considerably based on the type and precision of the tools.
The alarms selected in our experiments are generated by a commercial static analysis tool, TCS
ECA, as we had access to this tool and its analysis framework. Moreover, the author had prior
experience in designing different analyses using the framework. Using alarms generated by a
single static analysis tool as sample can pose a threat to the validity of our findings. Since
our experiments are based on a large number of alarms, generated for a variety of properties,
and different types of applications, we expect that the findings would not vary much if alarms
generated by some other static analysis tool are processed.

Use of benchmarks has been recommended to strengthen research validity in the software
engineering research [82, 214]. Wherever possible, we selected applications from earlier bench-
marks used to evaluate similar postprocessing techniques. For example, during evaluation of the
repositioning techniques (Chapters 3 and 4), we included open source applications that were used
to evaluate state-of-the-art clustering techniques (Section 3.6.1.2). Moreover, we ensured that the
selected applications included both industry and open source applications, except evaluation of
the techniques that process delta alarms (Chapter 6). The reason for the latter is that we were
unable to get access to multiple versions of industry applications. In this case, we randomly
selected applications from the applications used by Cha et al. [29] in their evaluation, whose
multiple versions were available online.
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7.3.2.2 Implementation of the Techniques

The presented techniques to evaluate reduction in the number of alarms require re-analysis of the
applications on which they are generated, except the one presented to manually inspect groups
of common-POI alarms. Depending on how precisely the required analyses in the techniques
are implemented, the reduction in number of alarms and the time taken by AFPE can vary. For
example, in the implementation of the original repositioning technique (Section 3.6.1.1), we
propagated the conditions anticipable at the function-entry to its caller only if the function is
called from a single place. We put this restriction to reduce the number of iterations required
for repositioning alarms. The reduction in iterations allows to reduce the overall analysis time.
However, this restriction can miss opportunities to merge a few more similar alarms together and
reduce the number of alarms. Therefore, the reduction observed in the number of alarms due to
repositioning can be higher if those techniques are more precisely implemented.

To compute efficiency obtained by our proposed techniques to improve AFPE efficiency
(Chapters 5 and 6), we applied AFPE without and with the proposed techniques, and measured
the difference in clock time as the efficiency improvement. The findings of the techniques vary
based on the time taken by AFPE, which in turn varies based on the AFPE implementation used.
For example, the techniques presented to improve efficiency of AFPE depend on the characterist-
ics of the model checker used. Therefore, the findings can vary greatly depending on the model
checker used. Ideally, to address this threat, evaluations should be based on multiple model
checkers. However, this increases the analysis time multi-fold. To limit the amount of analysis
time, we evaluated the techniques using CBMC, which is a commonly used model checker for
AFPE [34, 152, 153, 174]. As another example, the time taken by AFPE would vary based on
whether preprocessing techniques such as grouping of related assertions, loops abstraction, and
program slicing, are used before making the model checking calls. To address the threat, we im-
plemented preprocessing techniques which have been used in earlier studies related to improving
AFPE efficiency (Section 5.5.2). In our implementation, we verified the groups of assertions se-
quentially: one at a time. The time taken would vary based on whether the groups of assertions
are verified in parallel (and the number of threads used), machine configurations, etc.

The delta alarms selected to evaluate techniques proposed for postprocessing delta alarms
would vary based on the implementation computing delta alarms (Section 6.5). Our implement-
ation to compute delta alarms is based on the earlier implementation of impact analysis-based
technique proposed by Chimdyalwar and Kumar [36]. The computation of impacted alarms and
their classification depends on how precisely PDGs are computed and how precisely the mapping
of the code is created. For instance, we used diff to create the mapping of the code from two
subsequent versions. The mapping would be more precise if more advanced program differen-
cing techniques, such as AST Diff [61], are used. A more precise mapping can help to identify
equivalent changes and thus ignore some of the changed statements during the postprocessing.
As a result, delta alarms generated on those applications would vary, and therefore the findings
of the techniques that postprocess them.

7.3.2.3 Measurement of Manual Inspection Effort

Evaluating the method to manually inspect groups of common-POI alarms, requires measuring
the time required to inspect the groups in two settings: without the method, and with the method
(Section 5.5.1). Ideally, in the evaluation of the manual inspection method, groups of common-
POI alarms should be inspected by multiple reviewers because the inspection varies depending
on the reviewer’s expertise, skill, and familiarity with the code. Since manual inspection is
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a time consuming activity, reviewers require to spend considerable amount of time to inspect
alarms. Therefore, manual inspection of common-POI alarms was performed solely by the author
without involving additional reviewers. This might lead to subjective bias in the measurement of
time required.

7.3.3 External Validity
Threats to external validity concern the extent to which the evaluation results generalize, bey-
ond the sample used (the alarms selected in the evaluation), to the entire population. The entire
population of alarms can only be obtained by analyzing all applications for all possible verific-
ation properties, and such an evaluation is not possible. To mitigate the generalization threat,
we selected a large number of alarms generated for five different properties and on a variety of
applications. The properties selected are such that they are supported by bug finding as well as
code proving tools. The applications selected are a mix of open source and industry applications,
and written in a common programming language C, which is typically used to implement safety-
critical applications. Due to the common coding practices, we expect that the findings would not
vary much if alarms to be processed are generated by some other static analysis tool on different
applications and for other verification properties.

7.4 Future Work
This section describes several directions for future research.

In Chapter 2, we found that the approaches that have been proposed for postprocessing of
alarms are complementary. Moreover, many of the techniques implementing the same approach
are orthogonal. Thus, to further improve postprocessing of alarms, multiple techniques and ap-
proaches can be combined together. Studying feasibility of the different combinations possible,
and investigating their advantages and disadvantages, would be a valuable piece of future re-
search.

In Chapter 3, we presented repositioning technique to reduce the number of alarms. How-
ever, the reduction obtained is found to be limited. In Chapter 4, to improve the reduction, we
classified the controlling conditions of alarms as impacting and non-impacting. Considering
the effect of non-impacting conditions of alarms during repositioning allowed to further reduce
the number of alarms. We expect that the non-impacting controlling conditions can be used to
improve other techniques as well, e.g., to reduce size of code slices generated for the alarms,
which in turn can help techniques that are based on the code slices. Evaluating usage of these
non-impacting controlling conditions in other techniques can be a direction for future research.
Moreover, we find that, many of the controlling conditions identified as impacting do not impact
alarms. Therefore, to benefit from the non-impacting controlling conditions of alarms, designing
techniques to precisely classify the controlling conditions of alarms into the two classes can be
an interesting direction for future research.

In Chapter 5, we reduced redundancy in manual inspection of common-POI alarms gener-
ated on partitioned code, and AFPE applied to these alarms. We could reduce the redundancy
by taking into account that the alarms are generated for the same POI but appearing in mul-
tiple partitions. We believe that, on similar lines techniques implementing other postprocessing
approaches, such as ranking and pruning, can be improved when they are applied to common-
POI alarms. Designing the new techniques for the improvement and evaluating them can be a
direction for future research.
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In Chapters 5 and 6, during evaluation of the reuse-based technique to reduce the time taken
by AFPE, we found that the context expansion approach does not take into account the hierarchy
and structure of the calling functions. Based on the hierarchy and structure of calling func-
tions, we plan to reduce the number of model checking calls that arise due to applying context
expansion approach. In another finding during applying those improved AFPE techniques, we
observed that the technique to group related assertions groups related alarms which belong to
the same function. Moreover, during context expansion, model checking calls for related alarms
belonging to different functions can be combined when the calls are made for common calling
functions. Based on this observation, as a future work, we plan to formulate and evaluate a
technique to reduce the overall number of model checking calls.

Selection of Techniques Going beyond the studies immediately related to this thesis, we have
identified several topics that should be explored in the future. As discussed in Section 7.2, mul-
tiple techniques need to be combined to obtain better results through postprocessing. The com-
binations of the techniques however will increase the analysis time multi-fold. Hence, reducing
the analysis time is equally important. One approach to address this problem can be to quickly
predict the improvement that a time-consuming technique can provide before the technique is
applied. To this end, criteria need to be identified for those techniques to predict results on a
given application. For example, related alarms can be computed before repositioning alarms: if
no related alarms are present, application of repositioning technique can be skipped. Based on
time availability and prediction results of the applicable techniques, a subset of techniques can
be selected from a set of applicable techniques.

Furthermore, considering the advancement in machine-learning based techniques and their
application to process alarms (Section 2.4.3.1), we believe that machine learning can be used
to select a subset of techniques from a set of applicable techniques, which are more suitable
on a given application compared to the other techniques. To this end, machine learning can be
applied to learn the types (structures) of applications on which each of the techniques provides
better results, and then to select the most suitable technique(s) for a given new application.

Tuning Programming for Precise Static Analysis The imprecision of ASATs is due to mul-
tiple reasons, e.g., unconstrained environment, usage of dynamic memory allocation, and pres-
ence of loops whose termination cannot be proved or whose upper bound cannot be identified
statically. To reduce the number of alarms generated due to these reasons, we believe in edu-
cating developers to write the code in such a way that can improve precision of ASATs. For
example, assertions (annotations) can be added in the code to help ASATs inferring the restricted
range of values taken by the input variables. The loops can be written such that their bound can
be determined statically by the tools. It would be interesting to conduct research in this direction,
similar to The Power of Ten proposed by Gerard J. Holzmann [87].

Compile-time Static Analysis Existing studies about usage of ASATs [20, 92] indicate that
ASATs are used only when their usage is enforced as a part of team/organizational work-policy.
Moreover, the usage of tools is seen as a separate activity from the code development. To im-
prove adoption of ASATs and benefit from them, we believe that integrating static analysis into
compilers can help to improve adoption of ASATs. However, this would mandate that the ef-
ficiency of static analysis is comparable to compilers. Future research can be directed on how
static analysis can be made a part of compilers, without compromising performance of the com-
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pilers. One possible approach is to perform light-weight analysis by considering the evolutionary
nature of the code, where only the changed and impacted code gets analyzed.
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